1. Let A, B, C, and u be

$$A = \begin{pmatrix} 3 & 7 & -2 & 1 \\ 1 & 4 & 5 & 5 \\ 0 & 2 & 6 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 7 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}, \quad u = \begin{pmatrix} 4 \\ -2 \\ 1 \\ -1 \end{pmatrix}$$

c.(4pts) BC^T

Compute the following :

a.(3pts)
$$Au$$
 b.(3pts) A^T

1

2. For the given matrix M

(1	3	-2	4	5	
3	0	-6	7	$\begin{pmatrix} 5\\ -2 \end{pmatrix}$	
2	1	0	3	5	
$\begin{pmatrix} 2 \end{pmatrix}$	3	8	5	7)	

answer the two questions below.

a. (7pts) Find the reduced echelon form of M and a basis of Col M. Find m such that Col $M \subset \mathbb{R}^m$ and compute dim Col M.

b. (5pts) Define M_l as the matrix obtained from M by deleting the 5th column of M. Find M_l^{-1} and det M_l .

- 3. Mark each statement True or False. Justify your answer precisely. (You can use any theorems or definitions you have learned in class or in the book. Extra credit to those who answer all the true/false questions and justify them correctly.)
 - a. (3pts) For a matrix A, there exists a unique echelon form of A.

b. (3pts) The rank of an $m \times n$ matrix A is exactly same as the number of pivot columns of the reduced echelon form of A.

c. (3pts) Suppose that six vectors v_1, v_2, \dots, v_6 satisfy :

 $\{v_1, v_2, v_3, v_4\}, \{v_3, v_4, v_5, v_6\}, \text{ and } \{v_5, v_6, v_1, v_2\}$ are linearly independent sets of vectors. Then, $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ is a linearly independent set. d. (3pts) For every $n \times n$ matrix A, Col A is a subspace of \mathbb{R}^n .

e. (3pts) There exist two 3×3 matrices A and B such that

 $\mathrm{Col}\ A\cup\mathrm{Col}\ B$

is a subspace of \mathbb{R}^3 .

f. (3pts) For every 3×3 matrix A,

Col $A \neq$ Nul A.

4. Let \mathbb{P}_4 be the set of all polynomials of degree at most 4. Define

$$S = \{ p(x) \in \mathbb{P}_4 : p(1) = 0 \}$$

a. (7pts) Show that S is a subspace of \mathbb{P}_4 .

b. (7pts) Find a basis of S. What will dim S be?

5. (6pts) Let A be the following 2×2 matrix:

$$A = \left(\begin{array}{cc} 1 & 3 \\ 0 & 5 \end{array} \right)$$

Find all possible real numbers x such that

$$\det(A - xI) = 0$$

Here, I is the 2×2 identity matrix.