- 1. ¹Let V and W be vector spaces. Let $T: V \to W$ be a linear transformation. Suppose that dim V = n.
 - a. (5pts) Prove that ker T is a subspace of V.

b. (5pts) Prove that im T is a subspace of W.

 $\dim \ker T + \dim \operatorname{im} T = \dim V$

 $^{^1\}mathrm{This}$ problems is designed to give a proof for the generalized Rank Theorem, that is,

c. (5pts) Let $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ be a basis for ker T and extend the basis for ker T to a basis for V by adding $\{v_{m+1}, \dots, v_n\}$. Show that

 $T(a_1v_1 + \dots + a_mv_m + a_{m+1}v_{m+1} + \dots + a_nv_n) = a_{m+1}T(v_{m+1}) + \dots + a_nT(v_n)$

and conclude that

im T =Span $\{T(v_{m+1}), \cdots, T(v_n)\}$

d. (5pts) Show that $\{T(v_{m+1}), \dots, T(v_n)\}$ is linearly independent. Then, with the result of (c), conclude that

$$\mathcal{C} := \{T(v_{m+1}), \cdots, T(v_n)\}$$

is a basis for im T.

Therefore, dim ker T = m and dim im T = n - (m + 1) + 1 = n - m so that

 $\dim \ker T + \dim \operatorname{im} \, T = n = \dim V$

2. ²Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and W be a subspace of V. Given an orthogonal basis $\mathcal{B} = \{u_1, \cdots, u_m\}$ for W, recall that the formula of the orthogonal projection of $v \in V$ onto W is defined as

$$\frac{\langle u_1, v \rangle}{\langle u_1, u_1 \rangle} u_1 + \dots + \frac{\langle u_m, v \rangle}{\langle u_m, u_m \rangle} u_m$$

Let's denote the formula as $\operatorname{proj}_{W,\mathcal{B}}(v)$.

a. (8pts) Show that $v - \operatorname{proj}_{W,\mathcal{B}}(v)$ is orthogonal to $\operatorname{proj}_{W,\mathcal{B}}(v)$ and also $v - \operatorname{proj}_{W,\mathcal{B}}(v) \in W^{\perp}$. (Hint. Use the linearity property of an innder product $\langle \cdot, \cdot \rangle$ and the definition of *orthogonality*. In order to prove $v - \operatorname{proj}_{W,\mathcal{B}} \in W^{\perp}$, you only need to show that $v - \operatorname{proj}_{W,\mathcal{B}}$ is orthogonal to u_1, u_2, \dots, u_m .)

$$\frac{\langle u_1, v \rangle}{\langle u_1, u_1 \rangle} u_1 + \dots + \frac{\langle u_m, v \rangle}{\langle u_m, u_m \rangle} u_m,$$

 $^{^2\}mathrm{This}$ problem is designed in order to prove that the formula for the orthogonal projection,

is independent of the choice of an orthogonal basis $\{u_1, u_2, \cdots, u_m\}$ for W.

b. (3pts) Let $\mathcal{C} = \{w_1, \dots, w_m\}$ be another orthogonal basis for W^3 . Prove that⁴

 $\operatorname{proj}_{W,\mathcal{B}}(v) - \operatorname{proj}_{W,\mathcal{C}}(v) \in W^{\perp}.$

c. (3pts) Assume that there is no nonzero vector v such that $v \in W$ and $v \in W^{\perp}$ at the same time, without a proof. Using this fact, prove that

 $\operatorname{proj}_{W\mathcal{B}}(v) - \operatorname{proj}_{W\mathcal{C}}(v) = 0$

Therefore,

$$\operatorname{proj}_{W\mathcal{B}}(v) = \operatorname{proj}_{W\mathcal{C}}(v).$$

So, we can conclude that the formula of the orthogonal projection does not depend on the choice of an orthogonal basis.

³From a., we have $v - \operatorname{proj}_{W,C} \in W^{\perp}$. ⁴Hint. W^{\perp} is a subspace of V (you can use this fact without a proof) so that W^{\perp} is closed under addition and scalar multiplication.

3. (5pts) Find a general solution to

 $t^{2}y''(t) - 4ty'(t) + 6y(t) = 0.$

4. (8pts) Given a differential equation in normal form

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{f}(t)$$

the only information you have is a set of three solutions to the equation. They are

$$\left(\begin{array}{c}e^{-t}+e^{t}+e^{2t}\\2e^{t}-e^{2t}\end{array}\right),\quad \left(\begin{array}{c}-e^{-t}+e^{t}+e^{2t}\\2e^{t}-e^{2t}\end{array}\right),\quad \left(\begin{array}{c}e^{t}+e^{2t}\\2e^{t}-e^{2t}\end{array}\right).$$

Find **A** and $\mathbf{f}(t)$.

5. (15pts) Let A be a 3×3 matrix

$$\left(\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Compute e^{At} using generalized eigenvectors.⁵

⁵Hint. First, find the characteristic polynomial and then Nul $(A - \lambda I)^e$ where λ is an eigenvalue and e is the corresponding exponent. For $v \in \text{Nul}(A - \lambda I)^e$, you can compute $e^{At}v$ easily.

6. Let $C[-\pi,\pi]$ be the vector space of all continuous functions defined on $[-\pi,\pi]$. Let's define an inner product space $(C[-\pi,\pi], \langle \cdot, \cdot \rangle)$ by defining

$$\langle f(t), g(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt.$$

a. (3pts) Show that $\sin mt$, $\sin nt$ are orthogonal if $m \neq n$.

b. (3pts) Show that $\sin mt$, $\cos nt$ are orthogonal.

c. (3pts) Show that $||\sin kt||^2 = ||\cos kt||^2 = 1$ for $k \neq 0$.

d. (9pts) Find the second-order Fourier Approximation of

$$e^t, \quad -\pi \le t \le \pi$$

7. (10pts) Let A and B be $n \times n$ constant matrices and AB = BA. Prove that⁶

 $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}.$

 6 Hint.

$$(x+y)^n = \frac{n!}{n!}x^n + \frac{n!}{(n-1)!}x^{n-1}y + \frac{n!}{2!(n-2)!}x^{n-2}y^2 + \dots + \frac{n!}{k!(n-k)!}x^{n-k}y^k + \dots + \frac{n!}{n!}y^n.$$