EXAMPLE. Find the form for a particular solution to

$$y'' + 2y' - 3y = f(t),$$

where f(t) equals (a) $7\cos 3t$

(b) $2te^t \sin t$

(c) $t^2 \cos \pi t$ (d) $5e^{-3t}$ (e) $t^2 e^t$

1. An external force $F(t) = 2 \cos 2t$ is applied to a mass-spring system with m = 1, b = 0, and k = 4, which is initially at rest; i.e., y(0) = 0, y'(0) = 0. Verify that $y(t) = \frac{1}{2}t \sin 2t$ gives the motion of this spring. What will eventually (as t increases) happen to the spring?

2. Boundary Value Problems. When the values of a solution to a differential equation are specified at two different points, these conditions are called **boundary conditions**. This excercise is to show that for boundary value problems there is no Existence-Uniqueness Theorem. Given that every solution to

$$y'' + y = 0$$

is of the form

$$y(t) = c_1 \cos t + c_2 \sin t,$$

where c_1 and c_2 are arbitrary constants, show that

- (a) There is a unique solution to the given differential equation that satisfies the boundary condition y(0) = 2 and $y(\pi/2) = 0$.
- (b) There is no solution to the given differential equation that satisfies y(0) = 2 and $y(\pi) = 0$.
- (c) There are infinitely many solutions to the given differential equation that satisfy y(0) = 2 and $y(\pi) = -2$.

3. Prove the sum of angle formula for the sine function by following these steps. Fix x.

(a) Let $f(t) := \sin(x+t)$. Show that f''(t) + f(t) = 0, $f(0) = \sin x$, and $f'(0) = \cos x$.

- (b) Use the auxiliary equation technique to solve the initial value problem y'' + y = 0, $y(0) = \sin x$, and $y'(0) = \cos x$.
- (c) By uniqueness, the solution in part (b) is the same as f(t) from part (a). Write this equality.