1 Quadratic Forms

1.1 Change of Variable in a Quadratic Form

Given any basis
$$\mathcal{B} = \{v_1, \dots, v_n\}$$
 of \mathbb{R}^n , let $P = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$. Then, $\mathbf{v} = P^{-1}\mathbf{x}$

is the \mathcal{B} -coordinate of \mathbf{x} . So, P, kind of, changes a variable into another variable.

Now, let A be a symmetric matrix and define a quadratic form $\mathbf{x}^T A \mathbf{x}$. Take P as the matrix of which columns are eigenvectors. (This can be done by the Spectral Theorem.) Especially, P has orthonormal column vectors. Hence,

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T (P^T A P) \mathbf{y}$$

and P^TAP is a diagonal matrix of which diagonal entries are the eigenvalues of A. Such quadratic form can be written as

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$$
.

1.2 Classifying Quadratic Forms

1.2.1 Positive Definite

$$Q(\mathbf{x}) > 0$$
 for all $\mathbf{x} \neq \mathbf{0}$

Furthermore, if $Q(\mathbf{x}) \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$, then Q is **positive semidefinite**.

1.2.2 Negative Definite

$$Q(\mathbf{x}) < 0$$
 for all $\mathbf{x} \neq \mathbf{0}$

Furthermore, if $Q(\mathbf{x}) \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$, then Q is **negative semidefinite**.

1.2.3 Indefinite

 $Q(\mathbf{x})$ has both positive and negative values.

In fact, the quadratic form is

positive definite if and only if the eigenvalues of A are all positive negative definite if and only if the eigenvalues of A are all negative indefinite if and only if A has both positive and negative eigenvalues.

Furthermore, it is positive semidefinite if and only if the eigenvalues of A are nonnegative, negative semidefinite if and only if the eigenvalues of A are nonpositive.

2 Constrained Optimization

2.1 Theorem 6 : Max and Min of $Q(\mathbf{x})$ given $||\mathbf{x}|| = 1$

Let A be a symmetric matrix that defines a quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Then, under the condition that \mathbf{x} is a unit vector, the maximum value of $Q(\mathbf{x})$ is the largest eigenvalue λ_{max} and the minimum value of $Q(\mathbf{x})$ is the smallest eigenvalue λ_{min} .

$$\max\{Q(\mathbf{x}): ||\mathbf{x}|| = 1\} = \lambda_{max}, \quad \min\{Q(\mathbf{x}): ||\mathbf{x}|| = 1\} = \lambda_{min}$$

2.2 Theorem 7, 8

Under the same assumptions as 2.1, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints

$$\mathbf{x}^T \mathbf{x} = 1, \quad \mathbf{x}^T v_1 = 0$$

is the second largest eigenvalue λ_2 .

- 1. Mark each statement True or False.
 - a. The matrix of a quadratic form is a symmetric matrix.
 - b. A positive definite quadratic form Q satisfies $Q(\mathbf{x}) > 0$ for all \mathbf{x} in \mathbb{R}^n .
 - c. The expression $||\mathbf{x}||^2$ is a quadratic form.
 - d. An indefinite quadratic form is either positive semidefinite or negative semidefinite.
 - e. If A is symmetric and the quadratic form $\mathbf{x}^T A \mathbf{x}$ has only negative values for $\mathbf{x} \neq \mathbf{0}$, then the eigenvalues of A are all negative.
- 2. Show that if B is $m \times n$, then B^TB is positive semidefinite; and if B is $n \times n$ and invertible, then B^TB is positive definite.
- 3. Show that if an $n \times n$ matrix A is positive definite, then there exists a positive definite matrix B such that $A = B^T B$.
- 4. Let A and B be symmetric $n \times n$ matrices whose eigenvalues are all positive. Show that the eigenvalues of A + B are all positive.
- 5. Let A be an invertible $n \times n$ symmetric matrix. Show that if the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite, then so is the quadratic form $\mathbf{x}^T A^{-1} \mathbf{x}$.