1 Theorem 9 : The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of y onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to y, in the sense that

$$||\mathbf{y} - \hat{\mathbf{y}}|| < ||\mathbf{y} - \mathbf{v}||$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

What is the use of this theorem?

In fact, this theorem is significantly important to Statistics.

1.1 Least-Squares Problems

If A is $m \times n$ and **b** is in \mathbb{R}^m , a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$||\mathbf{b} - A\hat{\mathbf{x}}|| \le ||\mathbf{b} - A\mathbf{x}||$$

for all \mathbf{x} in \mathbb{R}^n .

Theorem 13 says that the solution set of

is the same as the solution set of

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

 $A\mathbf{x} = \mathbf{b}$

From this fact, we know that there exists a unique solution for such problem if and only if $A^T A$ is invertible (or rank A = n).

Statistical presumptions of Linear Models are based on this theorem.

$$X\beta = \mathbf{y}$$

1. Find an orthogonal basis for the column space of the matrix

$$\left(\begin{array}{rrrrr}1&3&5\\-1&-3&1\\0&2&3\\1&5&2\\1&5&8\end{array}\right)$$

2. Find the orthogonal projection of **b** onto Col A and a least-squares solution of $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$$

 $\mathbf{b}.$

a.

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} 9 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- 3. Mark each statement True or False. Justify your answer. (A is an $m \times n$ matrix and **b** is in \mathbb{R}^m .)
 - a. A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ that satisfies $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{b} onto Col A.
 - b. If the columns of A are linearly independent, then the equation $A\mathbf{x} = \mathbf{b}$ has exactly one least-squares solution.
 - c. If **b** is in the column space of A, then every solution of $A\mathbf{x} = \mathbf{b}$ is a least-squares solution.
 - d. A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a list of weights that, when applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto Col A.
- 4. In Assignment 7, you are given a problem; Show that Nul $A = \text{Nul } A^T A$. Using this fact without proof, show that

$$\operatorname{rank} A^T A = \operatorname{rank} A$$