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1 Similarity

Let A and B are n× n matrices. A and B are said to be similar to each other if there is an invertible matrix P

P−1AP = B.

1.1 Diagonalization (revisit)

These two statements are the same.

A is diagonalizable.

and

There exists a diagonal matrix D such that A is similar to D.

1.2 Theorem 4

If n× n matrices A and B are similar, then they have the same characteristic polynomial and hence the same
eigenvalues.

2 Linear Transformation (revisit)

We will discuss three examples. There is one new concept : the matrix for T relative to the bases B and C. When
B = C, we call the matrix as the B-matrix for T .

Example 1. Let D = {d1,d2} and B = {b1,b2} be bases for vector spaces V and W , respectively. Let T : V →W be a
linear transformation with the property that

T (d1) = 3b1 − 3b2, T (d2) = −2b1 + 5b2.

Find the matrix for T relative to D and B.

Example 2. Let B = {b1,b2,b3} be a basis for a vector space V and let T : V → R2 be a linear transformation with
the property that

T (x1b1 + x2b2 + x3b3) =

(
2x1 − 3x2 + x3

−2x1 + 5x3

)
.

Find the matrix for T relative to B and the standard basis for R2.
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Example 3. Let T : P2 → P3 be the transformation that maps a polynomial p(t) into the polynomial (t + 3)p(t).

a. Find the image of p(t) = 3− 2t + t2.

b. Show that T is a linear transformation.

c. Find the matrix for T relative to the bases {1, t, t2} and {1, t, t2, t3}.

2.1 Theorem 8 : A role of eigenvectors

Suppose A is diagonalizable and A = PDP−1. Then, for the basis B formed from the columns of P , then D
is the B-matrix for the transformation x 7→ Ax.

3 Complex Eigenvalues

It is enough to solve Chapter 5.5 problems of Assignment 6. :)
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4 Inner product

Recall that there are countless number of vector spaces other than Rn. So are inner products. Even, there are countless
inner products for one vector space. Let me first introduce the most common inner product on the vector space Rn.

4.1 The most standard inner product space Rn

Let’s fix n = 3.

Every vector in R3 can be written of the form
(x1, x2, x3).

We define the standard inner product, denoted by ·, on R3 in this way.

(x1, x2, x3) · (y1, y2, y3) = x1y1 + x2y2 + x3y3

Regarding each vector as a 3× 1 matrix, then
u · v = uT v.

In this case, the length of v, denoted by ||v|| is defined as the nonnegative square root of v · v ; ||v||2 = v · v and ||v|| ≥ 0.
Moreover, when a vector v has its length as 1, we say that v is a unit vector. The distance between u and v,

written as dist(u, v), is the length of the vector u− v : dist(u, v) = ||u− v||.
We can also show that u and v are perpendicular (or orthogonal) to each other if and only if u · v = 0. This can be

induced from the Pythagorian Theorem :

Two vectors u and v are orthogonal if and only if ||u + v||2 = ||u||2 + ||v||2.

In the last place, we define ortogonality for not only two vectors but also two sets of vectors in a very natural sense.
Furthermore, given a subspace W of Rn, we define the orthogonal complement of W , denoted by W⊥, as the set of
all vectors orthogonal to W .

4.2 Inner Product Space (V, 〈·, ·〉)
As a function, an inner product on a vector space V is a map from V × V to R, denoted by 〈·, ·〉, satisfying below four
axioms.

1) 〈u, v〉 = 〈v, u〉 for all u and v ∈ V .

2) 〈u + v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, and w ∈ V .

3) 〈cu, v〉 = c〈u, v〉 for all u, v ∈ V , and c ∈ R.

4) 〈u, u〉 ≥ 0 for all u ∈ V and 〈u, u〉 = 0 if and only if u = 0 ∈ V .

In words, you can say that a function 〈·, ·〉 : V × V → R which is symmetric, coordinatewisely linear, and contains
positiveness(?) is an inner product. A vector space equipped with an inner product is called an inner product space.
Let’s recall the definitions of many concepts in 4.1 above.

• Norm of a vector v : ||v|| =
√
〈v, v〉.

• Unit vector v : A vector v of length 1.

• Distance between u and v : ||u− v||.

• Orthogonal u and v : 〈u, v〉 = 0.

• Orthogonal complement of W : W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}.
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1. Show that if A and B are similar, then detA = detB.

2. Show that if A has n linearly independent eigenvectors, then so does AT .

3. Define T : P2 → R3 by

T (p) =

 p(−1)
p(0)
p(1)


a. Find the image under T of p(t) = 5 + 3t.

b. Show that T is a linear transformation.

c. Find the matrix for T relative to the basis {1, t, t2} for P2 and the standard basis for R3.

4. Define T : R2 → R2 as the matrix transformation defined by A =

(
4 −2
−1 5

)
. Find a basis B for R2 with the

property that [T ]B is diagonal.

5. Let A =

(
4 1
−1 2

)
and B = {b1,b2}, for b1 =

(
1
−1

)
, b2 =

(
−1
2

)
. Define T : R2 → R2 by T (x) = Ax.

a. Verify that b1 is an eigenvector of A but that A is not diagonalizable.

b. Find the B-matrix for T .
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6. Show that if A is similar to B, then A2 is similar to B2.

7. Are those vectors orthogonal?  12
3
−5

  2
−3
3



8. Mark each statement True or False. Justify your answer. (All vectors are in Rn).

a. v · v = ||v||2.

b. For any scalar c, u · (cv) = c(u · v).

c. If the distance from u to v equals the distance from u to −v, then u and v are orthogonal.

d. For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A.

e. For any scalar c, ||cv|| = c||v||.

f. If ||u||2 + ||v||2 = ||u + v||2, then u and v are orthogonal.

9. Verify this formula for vectors u and v in Rn.

||u + v||2 + ||u− v||2 = 2||u||2 + 2||v||2

10. Show that if x in in both W and W⊥, then x = 0.
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