1 Change of Basis

1.1 Change of Basis in \mathbb{R}^n

Let
$$\mathbf{b}_1 = \begin{pmatrix} -9\\ 1 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} -5\\ -1 \end{pmatrix}$, $\mathbf{c}_1 = \begin{pmatrix} 1\\ -4 \end{pmatrix}$, $\mathbf{c}_2 = \begin{pmatrix} 3\\ -5 \end{pmatrix}$. Find $\underset{C \leftarrow B}{P}$.

1.2 Change of Basis in \mathbb{P}_n

Let $\mathcal{B} = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$ in \mathbb{P}_2 . Find the change-of-coordinates matrix from the basis \mathcal{B} to the standard basis. Then write t^2 as a linear combination of the polynomials in \mathcal{B} .

2 Eigenvalues and Eigenvectors

From now on, we will only discuss about square matrices. Let A be an $n \times n$ matrix. Assume that there exists a real number λ such that

$$\det(A - \lambda I) = 0.$$

We call such real number as an eigenvalue of A. If you remind the Invertible Matrix Theorem, it implies that Nul $(A - \lambda I)$ is not the zero space. Every nonzero vector $v \in \text{Nul } (A - \lambda I)$ is called **an eigenvector**.

- 1. If A is a 7×5 matrix, what is the largest possible rank of A? If A is a 5×7 matrix, what is the largest possible rank of A? Explain your answers.
- 2. Mark each statement True or False. Justify your answer.
 - a. The dimensions of the row space and the column space of A are the same, even if A is not square.
 - b. If B is the reduced echelon form of A, and if B has exactly three nonzero rows, then the first three rows of A form a basis for Row A.
 - c. Row operations preserve the linear dependence relations among the rows of A.
 - d. If A an B are row equivalent, then their row spaces are the same.
- 3. Suppose A is $m \times n$ and **b** is in \mathbb{R}^m . What has to be true about the two numbers rank $(A \mathbf{b})$ and rank A in order for the equation $A\mathbf{x} = \mathbf{b}$ to be consistent?

4. a. Is $\lambda = 2$ an eigenvalue of $\begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix}$?

b. Is
$$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 an eigenvector of $\begin{pmatrix} 5 & 2 \\ 3 & 6 \end{pmatrix}$? If so, find the eigenvalue.

c. Is
$$\begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}$$
 an eigenvector of $\begin{pmatrix} 3 & 6 & 7\\ 3 & 2 & 7\\ 5 & 6 & 4 \end{pmatrix}$? If so, find the eigenvalue.

5. Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} .

6. Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.

7. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T .

- Let A be an n × n matrix. Mark each statement True or False. Justify your answer.
 a. If Ax = λx for some vector x, then λ is an eigenvalue of A.
 - b. A number c is an eigenvalue of A if and only if the equation $(A cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - c. If v_1 and v_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

9. Construct an example of a 2×2 matrix with only one distinct eigenvalue.