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1 One-to-one and Onto

Let A be an m× n matrix.

1.1 x 7→ Ax is onto

a. A has a pivot position in every row.

b. The rank of A is m.

c. For every b ∈ Rm, there exists x such that Ax = b.

d. Every b is a linear combination of the column vectors Ae1, Ae2, · · · , Aen.

e. Col A = Rm.

1.2 x 7→ Ax is one-to-one

a. For every b ∈ Rm, there exists only one x such that Ax = b or there is no solution for the equation.

b. Every b ∈ Rm has a unique representation
b = c1A1 + · · ·+ cnAn

or there is no representation of that form.
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2 Invertible matrix A

An n× n matrix A is invertible if and only if one of the followings is true

a. x 7→ Ax is one-to-one and onto.

b. Ax = 0 has a unique solution x = 0.

c. Nul A = 0.

d. rank A = n.

e. Col A = Rn.

f. The reduced echelon form of A is the n× n identity matrix I.

2.1 Finding the inverse of a matrix A

There are two ways to find the inverse of a matrix A. What are they?

3 Vector Space

What does it mean by a set of vectors being linearly independent? or a basis?

How do we define the dimension of a vector space? Is it well-defined?
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Practice Exam(?)

1. Prove that Col A is a vector space indeed. You can prove through 3 steps.

a. Explain why the zero vector is in Col A.

b. Show that the vector Ax + Aw is in Col A.

c. Given a scalar c, show that c(Ax) is in Col A.

2. Define T : P2 → R2 by T (p) =

(
p(0)
p(1)

)
.

a. Show that T is a linear transformation.

b. Find a polynomial p in P2 that spans the kernel of T , and describe the range of T .

3. Define a linear transformation T : P2 → R2 by T (p) =

(
p(0)
p(0)

)
. Find polynomials p1 and p2 in P2 that span the

kernel of T , and describe the range of T .

4. Explain what is wrong with the following discussion: Let f(t) = 3 + t and g(t) = 3t + t2, and note that g(t) = tf(t).
Then {f ,g} is linearly dependent because g is a multiple of f .
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5. Let M2×2 be the vector space of all 2 × 2 matrices, and define T : M2×2 → M2×2 by T (A) = A + AT , where

A =

(
a b
c d

)
.

a. Show that T is a linear transformation.

b. Let B be any element of M2×2 such that BT = B. Find an A in M2×2 such that T (A) = B.

c. Show that the range of T is the set of B in M2×2 with the property that BT = B.

d. Describe the kernel of T .

6. Given subspaces H and K of a vector space V , the sum of H and K, written as H + K, is the set of all vectors in V
that can be written as the sum of two vectors, one in H and the other in K; that is,

H + K = {w : w = u + v for some u ∈ H and some v ∈ K}

a. Show that H + K is a subspace of V .

b. Show that H is a subspace of H + K and K is a subspace of H + K.
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7. Mark each statement True or False. Justify each answer.

a. The set of all linear combinations of v1, · · · , vp is a vector space.

b. If {v1, · · · , vp−1} spans V , then {v1, · · · , vp−1, vp} spans V .

c. Row operations on a matrix A can change the linear dependence relations among the columns of A.

d. Row operations on a matrix can change the null space.

e. Row operations on a matrix can change the column space.

f. If B is obtained from a matrix A by several elementary row operations, then rank B =rank A.

g. If A is m× n and rank A = m, then the linear transformation x 7→ Ax is one-to-one.

8. Let H be an n-dimensional subspace of an n-dimensional vector space V . Explain why H = V .
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