1 Coordinate Systems

1.1 Unique Representation Theorem

For every basis $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_n}$ for a vector space V, a vector $v \in V$ has a unique representation of the form

$$v = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

and we define

$$[v]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

as the coordinates of v relative to the basis \mathcal{B} .

The coordinate mapping

$$v \mapsto [v]_{\mathcal{B}}$$

is a one-to-one linear transformation from V onto \mathbb{R}^n .

2 The dimension

As we have proved in the class, the dimension of a vector space V is well-defined. This implies many things.

3 The Rank Theorem

For every $m \times n$ matrix A,

rank $A + \dim \operatorname{Nul} A = n$

- 1. Consider the polynomials $\mathbf{p}_1(t) = 1 + t^2$ and $\mathbf{p}_2(t) = 1 t^2$. Is $\{\mathbf{p}_1, \mathbf{p}_2\}$ a linearly independent set in \mathbb{P}_3 ? Why or why not?
- 2. For each subspace below, find a basis for the subspace and state the dimension.

a.
$$\left\{ \left(\begin{array}{c} s - 2t \\ s + t \\ 3t \end{array} \right) : s, \ t \in \mathbb{R} \right\}$$

b.
$$\left\{ \begin{pmatrix} p+2q\\ -p\\ 3p-q\\ p+q \end{pmatrix} : p, \ q \in \mathbb{R} \right\}$$

c.
$$\left\{ \begin{pmatrix} 3a-c\\ -b-3c\\ -7a+6b+5c\\ -3a+c \end{pmatrix} : s, t \in \mathbb{R} \right\}$$

3. Find the coordinate vector $[v]_{\mathcal{B}}$ of v relative to the given basis $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_n}$.

a.
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} -3 \\ 4 \\ 9 \end{pmatrix}, \quad \mathbf{b}_3 = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}, \quad v = \begin{pmatrix} 8 \\ -9 \\ 6 \end{pmatrix}$$

b.
$$\mathbf{b}_1 = \begin{pmatrix} 1\\1\\3 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 2\\0\\8 \end{pmatrix}, \quad \mathbf{b}_3 = \begin{pmatrix} 1\\-1\\3 \end{pmatrix}, \quad v = \begin{pmatrix} 0\\0\\-2 \end{pmatrix}$$

4. Let $\mathbf{p}_1(t) = 1 + t^2$, $\mathbf{p}_2(t) = t - 3t^2$, $\mathbf{p}_3(t) = 1 + t - 3t^2$. Use coordinate vectors to show that these polynomials form a basis for \mathbb{P}_2 .

- 5. Mark each statement True or False. Justify the answer. (V is a vector space.)
 - a. A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .
 - b. The dimension of the vector space \mathbb{P}_4 is 4.
 - c. If dim V = n and S is a linearly independent set in V, then S is a basis for V.
 - d. If a set $\{v_1, \dots, v_p\}$ spans a finite-dimensional vector space V and if T is a set of more than p vectors in V, then T is linearly dependent.
 - e. A vector space is infinite-dimensional if it is spanned by an infinite set.
 - f. The only three-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself.
- 6. Explain why the space of \mathbb{P} of all polynomials is an infinite dimensional space.
- 7. Mark each statement True or False. Justify your answer. (V is a nonzero finite-dimensional vector space, and the vectors listed belong to V.)
 - a. If there exists a set $\{v_1, \dots, v_p\}$ that spans V, then dim $V \leq p$.
 - b. If there exists a linearly independent set $\{v_1, \dots, v_p\}$ in V, then dim $V \ge p$.
 - c. If dim V = p, then there exists a spanning set of p + 1 vectors in V.
 - d. If every set of p elements in V fails to span V, then $\dim V > p$.