1 The concept of (Linear or matrix) Transformation

1.1 Matrix transformation

A transformation T from \mathbb{R}^n to \mathbb{R}^m is a mapping that assigns each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . When $T(\mathbf{x})$ turns out to be $A\mathbf{x}$, where A is an $m \times n$ matrix, we denotes the transformation $\mathbf{x} \mapsto A\mathbf{x}$ as a matrix transformation.

1.2 Linear transformation

There are important two properties that every matrix transformation has in common.

$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}, \qquad A(c\mathbf{x}) = cA\mathbf{x} \ (\forall c \in \mathbb{R})$$

So, from now on, we want to think about all kinds of transformations that satisfy above two properties and such transformations are called *Linear Transformations*.

1.2.1 Definition of a Linear Transformation

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* when T satisfies

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}), \qquad T(c\mathbf{x}) = cT(\mathbf{x}) \ (\forall c \in \mathbb{R})$$

1.2.2 Linear transformation vs. Matrix transformation

It turns out to be that every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is exactly a transformation that multiplies a $m \times n$ matrix A when it is applied a vector in \mathbb{R}^n . Here is **Theorem 10** in Lay.

Theorem 10. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

We call the matrix A as the standard matrix for T.

1.2.3 Onto mappings and one-to-one mappings

When is a mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ called **onto**? and **one-to-one**?

2 Matrix Algebra

2.1 Matrix operations

Sum A + B

Scalar multiple cA

Matrix multiplication AB

There is one important condition that two matrices A and B should satisfy to make sense of AB. What is it?

2.2 Properties of Matrix multiplication

2.3 Powers of a Matrix and the Transpose of a Matrix

2.4 the Inverse matrix

What is the *inverse matrix* of a matrix A? When is it defined well?

Why is the *inverse matrix* important?

We use notation A^{-1} to represent the *inverse matrix* of a matrix A.