1 The matrix equation Ax = b

1.1 Multiplying a vector x to a matrix A

One matrix equation represents one linear system!

1.2 Theorem 4

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. A has a pivot position in every row.

1.3 Solutions of a linear system (revisit)

1.3.1 Homogeneous linear systems

A system of linear equations is said to be **homogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{0}$. This equation always has at least one solution, namely, $\mathbf{x} = \mathbf{0}$ which is usually called the **trivial solution**. So, we are interested in finding all **nontrivial solutions**.

1.3.2 Nonhomogeneous linear systems

Here is Theorem 6

If the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution (any possible solution). Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

2 Linear Independence

This concept is very important!

An indexed set of vectors $\{v_1, \dots, v_n\}$ in \mathbb{R}^m is said to be *linearly independent* if the vector equation

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$$

has only the *trivial solution*. It is *linearly dependent* if there exist x_1, x_2, \dots, x_n , not all zero, satisfying the above vector equation.

In other words, $\{v_1, \dots, v_n\}$ is *linearly dependent* if one of the vectors is the linear combination of other vectors. There could be one tautological definition of that using the concept of *Span*.

There is one particular case; one of the vectors is the zero vector. In this case, the set of the vectors is *linearly dependent* always.