## 1 Solutions of a linear system

#### 1.1 Concepts

What is a *linear equation*? and a *linear system*?

A *linear system* is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** otherwise (= if it has no solution).

#### **1.2** One important tool ; Matrix

Given a *linear system*, we define the *coefficient matrix* and the *augmented matrix*.

#### 1.3 Row operations

One way to solve a linear system is 'finding a solution using *elementary row operations*'.

- 1) Replacement; Add to one row a multiple of another row
- 2) Interchange ; Interchange two rows
- 3) Scaling; Multiply all entries in a row by a nonzero constant

# 2 Row reduction and Echelon Forms

\* Two matrices are called **row equivalent** to each other if one of them is induced from the other by elementary row operations.

## 2.1 Echelon Form

A rectangular matrix is in **echelon form** if it has the following three properties:

- (1) All nonzero rows are above any rows of all zeros.
- (2) Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- (3) All entries in a column below a leading entry are zeros.

For a given matrix, there are two concepts to remember ; an *echelon form* and the *reduced echelon form*.

An echelon form of a given matrix is a matrix in echelon form which is row equivalent to the given matrix. The reduced echelon form of a given matrix is the matrix in reduced echelon form which is row equivalent to the given matrix. Note that there exists a unique reduced echelon form for a given matrix.

## 2.2 Pivot positions

What is a *pivot position*?

## 3 Vectors

### 3.1 What is a vector?

We have two operations for vectors ; sum and scalar multiplication

### 3.2 Linear combinations

What is a *linear combination* of vectors  $\{v_1, v_2, \cdots, v_n\}$ ?

### 3.3 Span

What is  $Span\{v_1, \cdots, v_n\}$ ?