
§5.4 Eigenvectors and Linear Transformations

I Let V ,W = n-dimensional and m-dimensional Vector Spaces.

I Let T = linear transformation from V to W .

I Let B and C be bases for V ,W .

Given x ∈ V , [T (x)]C = (?) [x]B
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Matrix for T relative to B and C

Let x = α1 b1 + · · ·+ αn bn so that [x]B =

 α1
...

αn

 .

T (x) = α1 T (b1) + · · ·+ αn T (bn) ,

[T (x)]C =[α1T (b1) + · · ·+ αnT (bn)]C= α1 [T (b1)]C + · · ·+ αn [T (bn)]C

= [[T (b1)]C , [T (b2)]C , · · · , [T (bn)]C]

 α1
...

αn

 def
= M [x]B
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EX: Consider bases: B = {b1,b2} for V , C = {c1, c2, c3} for W .
T : V −→W is linear transformation satisfying

T (b1) = 3 c1 − 2 c2 + 5 c3 and T (b2) = 4 c1 + 7 c2 − c3.

Find M, Matrix for T relative to B and C.

Solution: By definition,

[T (b1)]C =

 3
−2

5

 , and [T (b2)]C =

 4
7
−1

 .

Hence M =

 3 4
−2 7

5 −1

 .
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Matrix relative to B for T : V → V .
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EX: Consider linear transformation: T : P2 → P2 defined by

T
(
a0 + a1 t + a2 t

2
)

= a1 + 2 a2 t.

a. Find [T ]B for basis B =
{

1, t, t2
}

.

b. Verify [T (p)]B = [T ]B [p]B for each p ∈ P2.

Solution (a): T (1) = 0, T (t) = 1, T
(
t2
)

= 2 t. Hence

[T (1)]B =

 0
0
0

 , [T (t)]B =

 1
0
0

 , [T (t2)]B =

 0
2
0

 .
[T ]B =

[
[T (1)]B , [T (t)]B ,

[
T
(
t2
)]
B
]

=

 0 1 0
0 0 2
0 0 0
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EX: Consider linear transformation: T : P2 → P2 defined by

T
(
a0 + a1 t + a2 t

2
)

= a1 + 2 a2 t.

b. Verify [T (p)]B = [T ]B [p]B for each p ∈ P2.

Solution (b): For p (t) = a0+a1 t+a2 t
2, T (p) (t) = a1+2 a2 t.

,

[p]B =

 a0
a1
a2

 , [T (p)]B =

 a1
2 a2

0

 =

 0 1 0
0 0 2
0 0 0

  a0
a1
a2

 = [T ]B [p]B .
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Linear Transformation on Rn

I For A ∈ Rn×n, define linear transformation on Rn:
T (x) = A x.

I Given basis B = {b1,b2, · · · ,bn}.
Find [T ]B = [[T (b1)]B , [T (b2)]B , · · · , [T (bn)]B]?

By definition, T (b1) = Ab1. Let [T (b1)]B =

 α1
...
αn

 so that

Ab1 = α1 b1 + α2 b2 + · · ·+ αn bn = [b1,b2, · · · ,bn]

 α1
...
αn

 ,

=⇒ [T (b1)]B =

 α1
...
αn

 = P−1 (Ab1) , with P = [b1,b2, · · · ,bn] .
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Linear Transformation on Rn

I Given basis B = {b1,b2, · · · ,bn}.
Find [T ]B = [[T (b1)]B , [T (b2)]B , · · · , [T (bn)]B]?

[T (b1)]B = P−1 (Ab1) , with P = [b1,b2, · · · ,bn] .

[T ]B = [[T (b1)]B , [T (b2)]B , · · · , [T (bn)]B]

=
[
P−1 (Ab1) , P−1 (Ab2) , · · · ,P−1 (Abn)

]
= P−1 A [b1,b2, · · · ,bn] = P−1 AP

Goal: Choose B to make [T ]B as simple as possible.

For any x ∈ Rn, [A x]B = [T (x)]B = [T ]B [x]B .
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Linear Transformation on R2: EX 1

I For A =

[
7 2
−4 1

]
, define linear transformation on R2:

T (x) = A x. Find B to simplify [T ]B

Solution: From example in §5.3,

A = P D P−1, where P =

[
1 1
−1 −2

]
, D =

[
5 0
0 3

]
.

Choose b1 =

[
1
−1

]
,b2 =

[
1
−2

]
to be columns of P. Then

[T ]B = P−1 AP = D =

[
5 0
0 3

]
, (diagonal matrix)
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Linear Transformation on R2: EX 2

I For A =

[
4 −9
4 −8

]
, define linear transformation on R2:

T (x) = A x. Find B to simplify [T ]B

I Solution: Find eigenvalues of A

det (A− λ I ) = det

(
4− λ −9

4 −8− λ

)
= (2 + λ)2 .

So eigenvalues are λ1 = λ2 = −2.

I Find eigenvectors of A

(A− λ1 I ) v =

(
6 −9
4 −6

)
v = 0, =⇒ v1 =

[
3
2

]
.

I Choose v2 =

[
−2
3

]
,P = [v1, v2] and B = {v1, v2}.
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§6.1 Inner Product

Let u =

 u1
...
un

 and v =

 v1
...
vn

 ∈ Rn.

I inner product of u and v
def
= u1 v1 + · · ·+ un vn

= uT v
(u · v in book)

I length of u (denoted ‖u‖) def
=
√

u21 + · · ·+ u2n =
√
uT u

EX: Let u =

 3
−5
2

 and v =

 1
2
1

 ∈ R3.

I inner product of u and v = 3 · 1 + (−5) · 2 + 2 · 1 = −5

I length of u : ‖u‖ =
√

32 + (−5)2 + 22 =
√

38
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Let u =

 u1
...
un

 and v =

 v1
...
vn

 ∈ Rn.

I distance between u and v (denoted dist (u, v))
def
= ‖u− v‖

I u and v are orthogonal if uT v = 0

EX: Let u =

 3
−5
2

 and v =

 1
1
1

 ∈ R3.

I distance between u and v : dist (u, v) = ‖u− v‖ =√
(3− 1)2 + (−5− 1)2 + (2− 1)2 =

√
41

I u and v are orthogonal: uT v = 3 · 1 + (−5) · 1 + 2 · 1 = 0

I

Pythagorean Thm: ‖u− v‖2 = (41 = 38 + 3 =) ‖u‖2 + ‖v‖2
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Pythagoras
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I Pythagorean Thm

c = ‖u− v‖
b = ‖v‖

a = ‖u‖

I Pythagorean Proof
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Orthogonal Complement of subspace W of Rm

I orthogonal complement of W (denoted W⊥)
def
=
{
u
∣∣ uT z = 0, for all z ∈W

}

EX: Let W = Span {a1, a2} with a1 =

 1
2
1

 , a2 =

 3
−2
1

.

Find W⊥.

I Solution: First note u ∈W⊥ ⇐⇒ uT [a1, a2] = [0, 0] .

I Hence u ∈W⊥ ⇐⇒ [a1, a2]T u =

[
0
0

]
.

I W⊥ = Nul AT , where AT def
= [a1, a2]T =

[
1 2 1
3 −2 1

]
.

I W⊥ = Span


 2

1
−4

 = (Col A)⊥
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Orthogonal Set

I A set of vectors {u1,u2, · · · ,up} in Rn is an orthogonal set
if the vectors in the set are mutually orthogonal.

EX: Show the set {u1,u2,u3,u4} is orthogonal set, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1
−4
7

 , u4 =

 0
0
0

 .

I Solution: Must verify that uTi uj = 0 for all i < j . Indeed

uT1 u2 = 3 · (−1) + 1 · 2 + 1 · 1 = 0,

uT1 u3 = 3 · (−1) + 1 · (−4) + 1 · (−7) = 0,

uT2 u3 = (−1) · (−1) + 2 · (−4) + 1 · (−7) = 0,

uTi u4 = 0, i = 1, 2, 3
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Orthogonal Set

I A set of vectors {u1,u2, · · · ,up} in Rn is an orthogonal set
if the vectors in the set are mutually orthogonal.

Thm: Assume S = {u1,u2, · · · ,up} is orthogonal set of non-zero
vectors. Then S is L.I.D set.

I Proof: Let

α1 u1 + α2 u2 + · · ·+ αp up = 0. (`1)

I Inner product with uj on both sides of (`1), for j = 1, · · · , p

uTj (α1 u1 + α2 u2 + · · ·+ αp up) = 0. (`2)

I All cross terms in (`2) die due to orthogonality:

αj u
T
j uj = 0. =⇒ Must have αj = 0 since uj 6= 0.
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I An orthogonal basis for a subspace W ⊆ Rn is a basis for
W that is also an orthogonal set.

Thm: Let {u1,u2, · · · ,up} be an orthogonal basis for a subspace
W ⊆ Rn. Then for each y ∈W , we must have

y = α1 u1+α2 u2+· · ·+αp up, with αj =
yT uj
uTj uj

, j = 1, · · · , p.

I Proof: Given y ∈W , y is linear combination of basis
vectors:

y = α1 u1 + α2 u2 + · · ·+ αp up. (`1)

I Inner product with uj on both sides of (`1), for j = 1, · · · , p
uTj y = uTj (α1 u1 + α2 u2 + · · ·+ αp up) . (`2)

I All cross terms in (`2) die due to orthogonality:

uTj y = αj u
T
j uj . =⇒ Must have αj =

yT uj
uTj uj

.
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EX: Given the set S = {u1,u2,u3} is orthogonal basis, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1
−4
7

 .
Express y =

 6
1
−8

 as linear combination of vectors in S.

I Solution: Write y = α1 u1 + α2 u2 + α3 u3 with

α1 =
yT u1
uT1 u1

=
11

11
= 1,

α2 =
yT u2
uT2 u2

=
−12

6
= −2,

α3 =
yT u3
uT3 u3

=
−66

66
= −1.

I So y = u1 − 2u2 − u3.
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Eastern hemisphere?

orthogonal projection: Humans evolutionary trained to see 3D in 2D views
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Orthogonal Projection
I Given non-zero vector u ∈ Rn.
I For any vector y ∈ Rn, decompose

y = ŷ+z, where ŷ ∈ Span {u} , z ∈ (Span {u})⊥ . (`1)

I Let ŷ = α u. Re-write (`1) as

y = α u + z, where z ∈ (Span {u})⊥ . (`2)

I Inner product with u on both sides of (`2),

uTy = uT (α u + z) = α uTu. =⇒ Must have α =
yT u

uT u
.

I orthogonal projection ŷ = ProjL y
def
=

yT u

uT u
u ,

(L = Span {u})
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Orthonormal Set

I Definition: Set S = {u1, · · · ,up} is orthonormal set if S
is orthogonal set of unit vectors.

I An orthonormal basis is basis that is orthonormal set.

I EX: Show the set {u1,u2,u3} is orthogonal set, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1
−4
7

 .

I Solution: Only need to verify mutual orthogonality:

uT1 u2 = 0, uT1 u3 = 0, uT2 u3 = 0.
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Orthonormal Set

I Definition: Set S = {u1, · · · ,up} is orthonormal set if S
is orthogonal set of unit vectors.

I An orthonormal basis is basis that is orthonormal set.

I Example: Show the set {v1, v2, v3} is orthonormal, where

v1 =
1√
11

 3
1
1

 , v2 =
1√
6

 −1
2
1

 , v3 =
1√
66

 −1
−4
7

 .

I Solution: Only need to verify vectors have unit length:

v1 =
u1
‖u1‖

, v2 =
u2
‖u2‖

, v3 =
u3
‖u3‖

.

I {v1, v2, v3} is orthonormal basis for R3
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Thm: Matrix U ∈ Rm×n has orthonormal columns ⇐⇒ UT U = I .

Proof: Let U = (u1, · · · ,un). Then

UT U =

 uT1
...
uTn

 (u1, · · · ,un) =
(
uTi uj

)
.

The (i , j) entry of UT U is uTi uj .

I For i = j : uTi ui = 1, each column of U has unit length.

I For i 6= j : uTi uj = 0, each pair of columns of U is orthogonal.
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Matrix of orthonormal columns, Example

I U = (v1, v2, v3), where

v1 =
1√
11

 3
1
1

 , v2 =
1√
6

 −1
2
1

 , v3 =
1√
66

 −1
−4
7

 .

U =


3√
11
− 1√

6
− 1√

66
1√
11

2√
6
− 4√

66
1√
11

1√
6

7√
66

 .
I UT U = I , U ∈ R3×3.

I =⇒ U−1 = UT .
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Thm: Let U ∈ Rm×n have orthonormal columns. Then for x, y ∈ Rn

a. ‖U x‖ = ‖x‖. Preserves length.

b. (U x)T (U y) = xT y. Preserves inner product.

I Proof of (b.):

(U x)T (U y) = xT
(
UT U

)
y = xT y.

I Proof of (a.): Let y = x in (b.).
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Square matrix of orthonormal columns, Example

U =


3√
11
− 1√

6
− 1√

66
1√
11

2√
6
− 4√

66
1√
11

1√
6

7√
66

 .

I UT U = I , U ∈ R3×3. =⇒ U−1 = UT .

I Definition: Square matrix of orthonormal columns is
orthogonal matrix.
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Square matrix of orthonormal columns, Example
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§6.3 Orthogonal Projection
Let W be a subspace of Rn with orthogonal basis {u1, · · · ,up}.

I Thm: For any vector y ∈ Rn, there exists unique
ŷ ∈W , z ∈W⊥, such that

y = ŷ + z. with ŷ =
yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up. (`)
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y = ŷ + z.

with ŷ =
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Let W be a subspace of Rn with orthogonal basis {u1, · · · ,up}.

I Thm: For any vector y ∈ Rn, there exists unique
ŷ ∈W , z ∈W⊥, such that

y = ŷ + z.

with ŷ =
yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up. (`)

I Proof: It is clear that ŷ ∈W . Let

z
def
= y − ŷ = y −

(
yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up

)
.

I Inner product of uj and z for j = 1, · · · , p:

uTj z = uTj y − uTj

(
yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up

)
= uTj y − uTj uj

yT uj
uTj uj

= 0.

I =⇒ z ∈W⊥.
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Orthogonal Projection, Example

Let W
def
= Span {v1, v2}, with v1 = 1√

11

 3
1
1

 , v2 = 1√
6

 −1
2
1


and y =

 3
2
1

. Write y = ŷ + z, with ŷ ∈W , z ∈W⊥,

Solution:

ŷ =
yT v1
vT1 v1

v1 +
yT v1
vT2 v2

v2 =
12

11

 3
1
1

+
1

3

 −1
2
1

 =
1

33

 97
58
47

 .
and

z = y − ŷ =

 3
2
1

− 1

33

 97
58
47

 =
1

33

 2
8
−14
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Best Approximation
Let W be a subspace of Rn with orthogonal basis {u1, · · · ,up}.

I Definition: For any vector y ∈ Rn, define
orthogonal projection as

projW y = ŷ =
yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up

I Thm: For all v ∈W , v 6= ŷ,

‖y − ŷ‖ < ‖y − v‖ .
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yT u1
uT1 u1

u1 + · · ·+ yT up
uTp up

up

I Thm: For all v ∈W , v 6= ŷ,
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