Dimension of Vector Space: Theorem 11

LET: H be a subspace of finite-dimensional vector space V.

THEN: any linearly independent set S = {uy,--- ,ux} C H can be
expanded to a basis for H, with  dim (H) < dim (V).
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Dimension of Vector Space: Theorem 11

LET: H be a subspace of finite-dimensional vector space V.
THEN: any linearly independent set S = {uy,--- ,ux} C H can be
expanded to a basis for H, with  dim (H) < dim (V).
PROOF: Assume H # {0} (see Book.)

(a) If H=Span{uy, - ,u}, then S already basis for H.

(b) Otherwise there must be a vector uxy1 € H but not in
Span {uy, - ,uk}.

(c) Let S =S U {ugs1}-

(d) Vectors in 8 must be linearly independent.

(e) Repeat steps (a-c) to continue expanding S until it spans H
and hence is a basis. QED
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Dimension of Vector Space: Theorem 12

Let V # {0} be p-dimensional vector space, S = {uy,--- ,up} € H. Then

S is basis <= & spans V' <= Vectors in S linearly independent.

PROOF: S spans V = S is basis (rest in book)
» Since S spans V/, a subset of S must be basis for V (Thm 5.)
» p=dim V = # of vectors in the subset. (by DEF.)
> Subset must be S. QED

)
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= [a1 a2 a3 a; as |
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5 20 2 8 8 00 0O 0O o0

Pivot columns are columns 1,3,5: Col A = Span (aj,as, as).
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» Pivot columns are columns 1,3,5: Col A = Span(aj,as,as).

[a1 a a3 a; as |

1IN W

4
12

8
20

0

1
1
2

0 W 1 N

oo N O

OOOH
O O O

OOHO

0
0

. |
OHOO =

» Free columns are columns 2,4: Letting Ax = 0 gives
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1
1
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» Pivot columns are columns 1,3,5: Col A = Span(aj,as,as).

[a1 a a3 a; as |

1IN W

402 -1 (1] 4 0o 2
1215 5| | 00[1 -1
8 1.3 2 00 0 O
20 2 8 8 00 0O O

. |
OHOO =

» Free columns are columns 2,4: Letting Ax = 0 gives

o

O O o

-2
0
+x4 . = Nul A= Span

1
1
0

dim (Col A) = 3 = # of pivots,

dim (Nul A) = 2 = # of free variables.
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O, P, ON

14
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DEF: Let A€ R™". Then Row A % the span of row vectors of A.
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§4.6 Rank

DEF: Let A€ R™". Then Row A % the span of row vectors of A.

-2 -5 8 0 -17 r

. . 1 3 -5 1 5 | def | 2
EX: ROW VECTOR FORM A = 3 11 -19 7 1 = r
|1 7 —-13 5 -3 r4

(1] 3 -5 1 5 e

N 0 —2 2 T | def | T

0 0 0 20 3

i 0 O 0 0 0 0

rL=ry, T =r +2r, r3=r4 -7 — 471, € Span(ry,ra,r3,ry).

= Span(ry,12,r3) = Span(ry,ra,r3,rs) = Row A.
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§4.6 Theorem 13

Let B be obtained from A with elementary operations = Row A = Row B.

PROOF: On the other hand,

Inverse of elementary operation is elementary operation

Every elementary operation on A is a linear combination of rows in B
each row of A is a linear combination of rows in B.

Row A C Row B. QED

L
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—2 -5 8 0 -17 r
def [a a as as as ] 1 3 51 5 | def | 2
- 1 92 93 9 3 11 -19 7 1| |
1 7 -13 5 -3 ra

3 -5 1 5 T
0 -2 2 —T7 | def | T2 SN
~ = | © | .|Row A|=Span (r;,r,,r
0 0 0 20 s pan (f1,72,13)

0 0 0 0 O 0

» Pivot columns 1,2,4 — = Span (aj,a, as).



vy

—2 -5 8 0 -17 r
1 92 9 2 3 11 =19 7 1] | rs
1 7 -13 5 -3 rs
3 5 1 5 1
0 -2 2 —T7 | def | T2 SN
= | © | .|Row A|=Span (r;,r,,r
0 0 o 20 s pan (11,2, 73)
0 0 0 0 O 0

Pivot columns 1,2,4 — = Span (aj,a, as).

free variable columns 3,5. Let Ax = 0.

-1 -1 -1 -1

2 -3 2 -3
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—2 -5 8 0 -17 r
def [a a as as as ] 1 3 51 5 | def | 2
- 1 92 93 9 3 11 -19 7 1| |
1 7 -13 5 -3 ra

3 -5 1 5 T
0 -2 2 —T7 | def | T2 SN
~ = | © | .|Row A|=Span (r;,r,,r
0 0 0 20 s pan (f1,72,13)

0 0 0 0 O 0

v

Pivot columns 1,2,4 — = Span (aj,a, as).

» free variable columns 3,5. Let Ax =0.
-1 -1 -1 -1
2 -3 2 -3
X = X3 1 |+xs 0|, = Span 1], 0
0 5 0 5
0 1 0 1

|dim (Col A) + dim (Nul A) = # of columns |
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rank (A) & dim (Col A): The Rank Theorem

rank (A) + dim (Nul A) = # of columns of A.

PROOF:

{# of pivot cols} + {# of free variables} = {# of cols}.
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rank (A) & dim (Col A): The Rank Theorem

rank (A) + dim (Nul A) = # of columns of A.

PROOF:

{# of pivot cols} + {# of free variables} = {# of cols}.

T T
rank dim (Nul A)



The Invertible Matrix Theorem (continued)
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The Invertible Matrix Theorem (continued)

Let A € R"*". Then following statements are equivalent.

a. Ais an invertible matrix.
m. Columns of A form a basis for R".
p. rank (A) = n.

r. dim (Nul A) = 0.
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Change of Basis: Example

Consider two bases for vector space V:
B:{bl,bg}, C:{Cl,CQ}.

with by =4c¢c;+c;, and by =—-6¢c1 + cp.

Suppose [x]; = { ’ ] find [,

SOLUTION: Basis relations are

b= 5] mae=| 5.

[xlc = [3b1+by]e =3 [bi]; + [bo];

(bale-foele | § |
3
1

= 11 3] 3= e

11/14
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Change of Basis

Consider two bases for vector space V:

B:{b17b27"'abn}a C:{cl’c27"'acn}~

def

P
change-of-coordinates matrix: C < B = [[bi].,[b2].,

P
Thm: For any vector x € V, [x], = C + B [x]|

v
WX
[l [ g
. _multiplication .
[x]. - by c fb’ [x]z
R" R"

FIGURE 2 Two coordinate systems for V.

o [bale]-
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. . def
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Thm: For any vector x € V, [x], = C+ B [x]z
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PROOF: Let x=a3 by + - -+ apb, sothat [x]z =
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EX: Consider two bases for R?: B = {by,by}, C = {c1,c}.

e[ 2] e [£] e[ 2] oo 3]

P
Find C « B =[[bi]., [b2].]
(71
SOLUTION: Let [by], = [ N ] Then
2
b; = ajcif+ascy = [ i ] [041 } S [ a1 ] — [ C1 C2 ]*1 b;.

a2 a2

therefore [by]l, = c1 ¢ ]_1 bi, and [bo]e=[a e ]_1 b>.

C : B [[bl]c,[bg]c] = [ Ci ©Co ]_1 [ b1 b2 ]

S SR I I (Y
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