
Dimension of Vector Space: Theorem 11

Let: H be a subspace of finite-dimensional vector space V .

Then: any linearly independent set S = {u1, · · · ,uk} ⊆ H can be
expanded to a basis for H, with dim (H) ≤ dim (V ) .

Proof: Assume H 6= {0} (see Book.)

(a) If H = Span {u1, · · · ,uk}, then S already basis for H.

(b) Otherwise there must be a vector uk+1 ∈ H but not in
Span {u1, · · · ,uk}.

(c) Let Ŝ = S ∪ {uk+1}.
(d) Vectors in Ŝ must be linearly independent.

(e) Repeat steps (a-c) to continue expanding S until it spans H
and hence is a basis. QED
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Dimension of Vector Space: Theorem 12

Let V 6= {0} be p-dimensional vector space, S = {u1, · · · ,up} ⊆ H. Then

S is basis ⇐⇒ S spans V ⇐⇒ Vectors in S linearly independent.

Proof: S spans V =⇒ S is basis (rest in book)

I Since S spans V , a subset of S must be basis for V (Thm 5.)

I p = dimV = # of vectors in the subset. (by Def.)

I Subset must be S. QED
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A =
[
a1 a2 a3 a4 a5

]
=


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 ∼


1 4 0 2 −1

0 0 1 −1 8

0 0 0 0 -4
0 0 0 0 0

 .
I Pivot columns are columns 1, 3, 5: Col A = Span (a1, a3, a5).

I Free columns are columns 2, 4: Letting A x = 0 gives

x = x2


−4

1
0
0
0

+x4


−2

0
1
1
0

 . =⇒ Nul A = Span



−4

1
0
0
0

 ,

−2

0
1
1
0


 .

dim (Col A) = 3 = # of pivots,

dim (Nul A) = 2 = # of free variables.
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§4.6 Rank
Def: Let A ∈ Rm×n. Then Row A

def
= the span of row vectors of A.

EX: row vector form A =


−2 −5 8 0 −17

1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 def
=


r1
r2
r3
r4



∼


1 3 −5 1 5

0 1 −2 2 −7

0 0 0 -4 20
0 0 0 0 0

 def
=


r̂1
r̂2
r̂3
0

 .

r̂1 = r2, r̂2 = r1 + 2 r̂2, r̂3 = r4 − r̂1 − 4 r̂2 ∈ Span (r1, r2, r3, r4) .

=⇒ Span (̂r1, r̂2, r̂3) = Span (r1, r2, r3, r4) = Row A.
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§4.6 Theorem 13

Let B be obtained from A with elementary operations =⇒ Row A = Row B.

Proof: On one hand,

Every elementary operation on A is a linear combination of rows in A

=⇒ each row of B is a linear combination of rows in A.

=⇒ Row B ⊆ Row A.
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A
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=

[
a1 a2 a3 a4 a5

]
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3 11 −19 7 1
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 def
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r̂1
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0

 . Row A = Span (̂r1, r̂2, r̂3)

I Pivot columns 1, 2, 4 =⇒ Col A = Span (a1, a2, a4).
I free variable columns 3, 5. Let A x = 0.

x = x3


−1

2
1
0
0

+x5


−1
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5
1

 , Nul A = Span



−1

2
1
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 ,

−1
−3

0
5
1




dim (Col A) + dim (Nul A) = # of columns
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rank (A)
def
= dim (Col A)

: The Rank Theorem

rank (A) + dim (Nul A) = # of columns of A.

Proof:

{# of pivot cols}+ {# of free variables} = {# of cols} .
⇑ ⇑

rank dim (Nul A)
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The Invertible Matrix Theorem (continued)

Let A ∈ Rn×n. Then following statements are equivalent.

a. A is an invertible matrix.

m. Columns of A form a basis for Rn.

p. rank (A) = n.

r. dim (Nul A) = 0.
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§4.7 Change of Basis

Let x ∈ Rn, let B and C be two bases for Rn.

I [x]B and [x]C are coordinates in bases B and C, respectively.

I How do [x]B and [x]C relate?

EX: Let [x]B =

[
3
1

]
, [x]C =

[
6
4

]
. Then [x]C = [?] · [x]B
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Change of Basis: Example
Consider two bases for vector space V :

B = {b1,b2} , C = {c1, c2} .

with b1 = 4 c1 + c2, and b2 = −6 c1 + c2.

Suppose [x]B =

[
3
1

]
, find [x]C .

Solution: Basis relations are

[b1]C =

[
4
1

]
, [b2]C =

[
−6

1

]
.

[x]C = [3b1 + b2]C = 3 [b1]C + [b2]C

= [[b1]C , [b2]C]

[
3
1

]
=

[
4 −6
1 1

] [
3
1

]
=

[
6
4

]

11 / 14
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Change of Basis
Consider two bases for vector space V :

B = {b1,b2, · · · ,bn} , C = {c1, c2, · · · , cn} .

change-of-coordinates matrix:
P

C ← B def
= [[b1]C , [b2]C , · · · , [bn]C] .

Thm: For any vector x ∈ V , [x]C =
P

C ← B [x]B

12 / 14
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EX: Consider two bases for R2: B = {b1,b2} , C = {c1, c2} .

with b1 =

[
−9

1

]
, b2 =

[
−5
−1

]
, c1 =

[
1
−4

]
, c2 =

[
3
−5

]
.

Find
P

C ← B = [[b1]C , [b2]C]

Solution: Let [b1]C =

[
α1

α2

]
. Then

b1 = α1 c1+α2 c2 =
[
c1 c2

] [ α1

α2

]
=⇒

[
α1

α2

]
=
[
c1 c2

]−1
b1.

therefore [b1]C =
[
c1 c2

]−1
b1, and [b2]C =

[
c1 c2

]−1
b2.

P
C ← B = [[b1]C , [b2]C] =

[
c1 c2

]−1 [
b1 b2

]
=

[
1 3
−4 −5

]−1 [ −9 −5
1 −1

]
=

[
6 4
−5 −3

]

14 / 14
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