LET: *H* be a subspace of finite-dimensional vector space *V*. THEN: any linearly independent set $S = {\mathbf{u}_1, \dots, \mathbf{u}_k} \subseteq H$ can be expanded to a basis for *H*, with $\dim(H) \leq \dim(V)$.

LET: H be a subspace of finite-dimensional vector space V.
THEN: any linearly independent set S = {u₁, ..., u_k} ⊆ H can be expanded to a basis for H, with dim (H) ≤ dim (V).
PROOF: Assume H ≠ {0} (see Book.)
(a) If H = Span {u₁,..., u_k}, then S already basis for H.

LET: *H* be a subspace of finite-dimensional vector space *V*. THEN: any linearly independent set $S = {\mathbf{u}_1, \dots, \mathbf{u}_k} \subseteq H$ can be expanded to a basis for *H*, with $\dim(H) \leq \dim(V)$.

PROOF: Assume $H \neq \{\mathbf{0}\}$ (see Book.)

- (a) If $H = \text{Span} \{ \mathbf{u}_1, \cdots, \mathbf{u}_k \}$, then S already basis for H.
- (b) Otherwise there must be a vector $\mathbf{u}_{k+1} \in H$ but not in Span $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$.

LET: *H* be a subspace of finite-dimensional vector space *V*. THEN: any linearly independent set $S = {\mathbf{u}_1, \dots, \mathbf{u}_k} \subseteq H$ can be expanded to a basis for *H*, with $\dim(H) \leq \dim(V)$.

PROOF: Assume $H \neq \{\mathbf{0}\}$ (see Book.)

- (a) If $H = \text{Span} \{ \mathbf{u}_1, \cdots, \mathbf{u}_k \}$, then S already basis for H.
- (b) Otherwise there must be a vector $\mathbf{u}_{k+1} \in H$ but not in Span $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$.
- (c) Let $\widehat{\mathcal{S}} = \mathcal{S} \cup \{\mathbf{u}_{k+1}\}.$
- (d) Vectors in $\widehat{\mathcal{S}}$ must be linearly independent.

LET: *H* be a subspace of finite-dimensional vector space *V*. THEN: any linearly independent set $S = {\mathbf{u}_1, \dots, \mathbf{u}_k} \subseteq H$ can be expanded to a basis for *H*, with $\dim(H) \leq \dim(V)$.

PROOF: Assume $H \neq \{\mathbf{0}\}$ (see Book.)

- (a) If $H = \text{Span} \{ \mathbf{u}_1, \cdots, \mathbf{u}_k \}$, then S already basis for H.
- (b) Otherwise there must be a vector $\mathbf{u}_{k+1} \in H$ but not in Span $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$.
- (c) Let $\widehat{\mathcal{S}} = \mathcal{S} \cup \{\mathbf{u}_{k+1}\}.$
- (d) Vectors in \widehat{S} must be linearly independent.
- (e) Repeat steps (a-c) to continue expanding S until it spans H and hence is a basis. QED

Let $V \neq \{\mathbf{0}\}$ be *p*-dimensional vector space, $S = \{\mathbf{u}_1, \cdots, \mathbf{u}_p\} \subseteq H$. Then

S is basis $\iff S$ spans $V \iff$ Vectors in S linearly independent.

Let $V \neq \{\mathbf{0}\}$ be *p*-dimensional vector space, $S = \{\mathbf{u}_1, \cdots, \mathbf{u}_p\} \subseteq H$. Then

S is basis $\iff S$ spans $V \iff$ Vectors in S linearly independent.

PROOF: S spans $V \Longrightarrow S$ is basis (rest in book)

Since S spans V, a subset of S must be basis for V (**Thm 5**.)

Let $V \neq \{\mathbf{0}\}$ be *p*-dimensional vector space, $S = \{\mathbf{u}_1, \cdots, \mathbf{u}_p\} \subseteq H$. Then

S is basis $\iff S$ spans $V \iff$ Vectors in S linearly independent.

PROOF: S spans $V \Longrightarrow S$ is basis (rest in book)

Since S spans V, a subset of S must be basis for V (**Thm 5**.)

2/14

• $p = \dim V = \#$ of vectors in the subset. (by DEF.)

Let $V \neq \{\mathbf{0}\}$ be *p*-dimensional vector space, $S = \{\mathbf{u}_1, \cdots, \mathbf{u}_p\} \subseteq H$. Then

S is basis $\iff S$ spans $V \iff$ Vectors in S linearly independent.

PROOF: S spans $V \Longrightarrow S$ is basis (rest in book)

- Since S spans V, a subset of S must be basis for V (**Thm 5**.)
- $p = \dim V = \#$ of vectors in the subset. (by DEF.)
- Subset must be S. QED

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

• Pivot columns are columns 1, 3, 5: Col A =**Span** ($\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5$).

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Pivot columns are columns 1, 3, 5: Col A = Span (a₁, a₃, a₅).
Free columns are columns 2, 4: Letting A x = 0 gives

$$\mathbf{x} = x_2 \begin{bmatrix} -4\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -2\\0\\1\\1\\0 \end{bmatrix}, \implies \text{Nul } A = \mathbf{Span} \left(\begin{bmatrix} -4\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1\\1\\0 \end{bmatrix} \right)$$

.

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivot columns are columns 1, 3, 5: Col A = Span (a₁, a₃, a₅).
Free columns are columns 2, 4: Letting A x = 0 gives

$$\mathbf{x} = x_2 \begin{bmatrix} -4\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -2\\0\\1\\1\\0 \end{bmatrix}, \implies \text{Nul } A = \mathbf{Span} \left(\begin{bmatrix} -4\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1\\1\\0 \end{bmatrix} \right)$$

dim (Col A) = 3 = # of pivots, dim (Nul A) = 2 = # of free variables. §4.6 Rank

DEF: Let $A \in \mathcal{R}^{m \times n}$. Then Row $A \stackrel{def}{=}$ the **span** of row vectors of A.

 $\mathbf{EX: ROW VECTOR FORM A} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}.$

4日 > 4日 > 4日 > 4目 > 4目 > 4目 > 900 4/14 §4.6 Rank

DEF: Let $A \in \mathcal{R}^{m \times n}$. Then Row $A \stackrel{def}{=}$ the **span** of row vectors of A.

$$\mathbf{EX: ROW VECTOR FORM } A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix}.$$

 $\widehat{\textbf{r}}_1=\textbf{r}_2,\ \widehat{\textbf{r}}_2=\textbf{r}_1+2\,\widehat{\textbf{r}}_2,\ \widehat{\textbf{r}}_3=\textbf{r}_4-\widehat{\textbf{r}}_1-4\,\widehat{\textbf{r}}_2\in \textbf{Span}\left(\textbf{r}_1,\textbf{r}_2,\textbf{r}_3,\textbf{r}_4\right).$

§4.6 Rank

DEF: Let $A \in \mathcal{R}^{m \times n}$. Then Row $A \stackrel{def}{=}$ the **span** of row vectors of A.

$$\mathbf{EX: ROW VECTOR FORM A} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix}$$

 $\widehat{\textbf{r}}_1=\textbf{r}_2,\ \widehat{\textbf{r}}_2=\textbf{r}_1+2\,\widehat{\textbf{r}}_2,\ \widehat{\textbf{r}}_3=\textbf{r}_4-\widehat{\textbf{r}}_1-4\,\widehat{\textbf{r}}_2\in \textbf{Span}\left(\textbf{r}_1,\textbf{r}_2,\textbf{r}_3,\textbf{r}_4\right).$

 $\implies \quad \mathsf{Span}\left(\widehat{\mathsf{r}}_{1},\widehat{\mathsf{r}}_{2},\widehat{\mathsf{r}}_{3}\right)=\mathsf{Span}\left(\mathsf{r}_{1},\mathsf{r}_{2},\mathsf{r}_{3},\mathsf{r}_{4}\right)=\mathsf{Row}\;\mathcal{A}.$

・ロ ・ ・ () ・ ・ () ・ ・ () ・ ・ () ・ ・ () ・ ・ () ・ ・ ()

Let B be obtained from A with elementary operations \implies Row A = Row B.

Let B be obtained from A with elementary operations \implies Row A = Row B.

PROOF: On one hand,

Every elementary operation on A is a linear combination of rows in A

Let B be obtained from A with elementary operations \implies Row A =Row B.

PROOF: On one hand,

Every elementary operation on A is a linear combination of rows in A \Rightarrow each row of B is a linear combination of rows in A. Let B be obtained from A with elementary operations \implies Row A = Row B.

PROOF: On one hand,

Every elementary operation on A is a linear combination of rows in A

- \implies each row of *B* is a linear combination of rows in *A*.
- \implies Row $B \subseteq$ Row A.

Let B be obtained from A with elementary operations \implies Row A = Row B.

Let B be obtained from A with elementary operations \implies Row A = Row B.

PROOF: On the other hand,

Inverse of elementary operation is elementary operation

Let B be obtained from A with elementary operations \implies Row A = Row B.

 $\operatorname{Proof:}$ On the other hand,

Inverse of elementary operation is elementary operation

 \implies Every elementary operation on A is a linear combination of rows in B

Let B be obtained from A with elementary operations \implies Row A = Row B.

 $\operatorname{Proof:}$ On the other hand,

Inverse of elementary operation is elementary operation

- \implies Every elementary operation on A is a linear combination of rows in B
- \implies each row of A is a linear combination of rows in B.

Let B be obtained from A with elementary operations \implies Row A = Row B.

 $\operatorname{Proof:}$ On the other hand,

Inverse of elementary operation is elementary operation

 \implies Every elementary operation on A is a linear combination of rows in B

6/14

- \implies each row of A is a linear combination of rows in B.
- \implies Row $A \subseteq$ Row B. **QED**

$$A \stackrel{def}{=} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix} \cdot \underbrace{\operatorname{Row} A} = \operatorname{Span} \left(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3 \right)$$

$$A \stackrel{def}{=} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix} \cdot \underbrace{\operatorname{Row} A} = \operatorname{Span}\left(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3\right)$$

▶ Pivot columns 1, 2, 4 \implies Col A = Span ($\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$).

$$A \stackrel{def}{=} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix} \cdot \underbrace{\operatorname{Row} A} = \operatorname{Span} (\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3)$$

Pivot columns 1, 2, 4 ⇒ Col A = Span (a₁, a₂, a₄).
 free variable columns 3, 5. Let A x = 0.

$$\mathbf{x} = x_3 \begin{bmatrix} -1\\ 2\\ 1\\ 0\\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1\\ -3\\ 0\\ 5\\ 1 \end{bmatrix}, \quad \boxed{\text{Nul } A} = \textbf{Span} \left(\begin{bmatrix} -1\\ 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ -3\\ 0\\ 5\\ 1 \end{bmatrix} \right)$$

7/14

$$A \stackrel{def}{=} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} \hat{\mathbf{r}}_1 \\ \hat{\mathbf{r}}_2 \\ \hat{\mathbf{r}}_3 \\ \mathbf{0} \end{bmatrix} \cdot \underbrace{\operatorname{Row} A} = \operatorname{Span} (\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2, \hat{\mathbf{r}}_3)$$

$$\mathbf{x} = x_3 \begin{bmatrix} -1\\ 2\\ 1\\ 0\\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1\\ -3\\ 0\\ 5\\ 1 \end{bmatrix}, \quad \boxed{\text{Nul } A} = \text{Span} \left(\begin{bmatrix} -1\\ 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ -3\\ 0\\ 5\\ 1 \end{bmatrix} \right)$$
$$\boxed{\dim (\text{Col } A) + \dim (\text{Nul } A) = \# \text{ of columns}} = 3 \text{ columns} = 3 \text{$$

$\mathsf{rank}\,(A) \stackrel{def}{=} \mathsf{dim}\,(\mathsf{Col}\;A)$

(ロ) (回) (E) (E) (E) (O)

rank (A) $\stackrel{def}{=}$ **dim** (Col A): The Rank Theorem

 $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{Nul} A) = \# \text{ of columns of } A.$

Proof:

 $\{\# \text{ of pivot cols}\} + \{\# \text{ of free variables}\} = \{\# \text{ of cols}\}.$

$\mathsf{rank}\,(A) \stackrel{def}{=} \mathsf{dim}\,(\mathsf{Col}\;A)$

(ロ) (回) (E) (E) (E) (O)

rank (A) $\stackrel{def}{=}$ **dim** (Col A): The Rank Theorem

 $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{Nul} A) = \# \text{ of columns of } A.$

Proof:

 $\{ \# \text{ of pivot cols} \} + \{ \# \text{ of free variables} \} = \{ \# \text{ of cols} \} .$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \\ \textbf{rank} \qquad \textbf{dim} (\text{Nul } A)$

The Invertible Matrix Theorem (continued)

<ロト <部ト < Eト を E の Q (C) 9/14

The Invertible Matrix Theorem (continued)

Let $A \in \mathcal{R}^{n \times n}$. Then following statements are equivalent.

9/14

- **a.** A is an invertible matrix.
- **m.** Columns of A form a basis for \mathcal{R}^n .
- **p.** rank (A) = n.
- **r.** dim (Nul A) = 0.

§4.7 Change of Basis

§4.7 Change of Basis

Let $\mathbf{x} \in \mathcal{R}^n$, let \mathcal{B} and \mathcal{C} be two <u>bases</u> for \mathcal{R}^n .

- ▶ $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ are coordinates in bases \mathcal{B} and \mathcal{C} , respectively.
- How do $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ relate?

§4.7 Change of Basis

Let $\mathbf{x} \in \mathcal{R}^n$, let \mathcal{B} and \mathcal{C} be two <u>bases</u> for \mathcal{R}^n .

▶ $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ are coordinates in bases \mathcal{B} and \mathcal{C} , respectively.

イロン イロン イヨン イヨン 三日

10/14

• How do $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ relate?

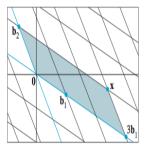
EX: Let
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$$
, $[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 6\\4 \end{bmatrix}$. Then $[\mathbf{x}]_{\mathcal{C}} = [?] \cdot [\mathbf{x}]_{\mathcal{B}}$

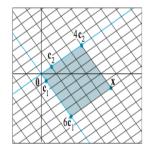
§4.7 Change of Basis

Let $\mathbf{x} \in \mathcal{R}^n$, let \mathcal{B} and \mathcal{C} be two <u>bases</u> for \mathcal{R}^n .

- ▶ $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ are coordinates in bases \mathcal{B} and \mathcal{C} , respectively.
- How do $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$ relate?

EX: Let
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$$
, $[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 6\\4 \end{bmatrix}$. Then $[\mathbf{x}]_{\mathcal{C}} = [?] \cdot [\mathbf{x}]_{\mathcal{B}}$





$$\mathcal{B} = \left\{ \textbf{b}_1, \textbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \textbf{c}_1, \textbf{c}_2 \right\}.$$

$$\mathcal{B} = \left\{ \mathbf{b}_1, \mathbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \mathbf{c}_1, \mathbf{c}_2 \right\}.$$

$$\begin{array}{ll} \mbox{with} \quad {\boldsymbol{b}}_1 = 4\,{\boldsymbol{c}}_1 + {\boldsymbol{c}}_2, \quad \mbox{and} \quad {\boldsymbol{b}}_2 = -6\,{\boldsymbol{c}}_1 + {\boldsymbol{c}}_2. \\ \mbox{Suppose} \; [{\boldsymbol{x}}]_{\mathcal{B}} = \left[\begin{array}{c} 3\\ 1 \end{array} \right], \mbox{ find} \; [{\boldsymbol{x}}]_{\mathcal{C}} \,. \end{array}$$

$$\mathcal{B} = \left\{ \mathbf{b}_1, \mathbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \mathbf{c}_1, \mathbf{c}_2 \right\}.$$

with
$$\mathbf{b}_1 = 4 \mathbf{c}_1 + \mathbf{c}_2$$
, and $\mathbf{b}_2 = -6 \mathbf{c}_1 + \mathbf{c}_2$.
Suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{C}}$.
SOLUTION: Basis relations are
 $[\mathbf{b}_1]_{\mathcal{A}} = \begin{bmatrix} 4\\1 \end{bmatrix}$ $[\mathbf{b}_2]_{\mathcal{A}} = \begin{bmatrix} -6\\1 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \mathbf{a} \\ 1 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \mathbf{a} \\ 1 \end{bmatrix}.$$

$$\mathcal{B} = \left\{ \mathbf{b}_1, \mathbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \mathbf{c}_1, \mathbf{c}_2 \right\}.$$

with
$$\mathbf{b}_1 = 4 \mathbf{c}_1 + \mathbf{c}_2$$
, and $\mathbf{b}_2 = -6 \mathbf{c}_1 + \mathbf{c}_2$.
Suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\1 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{C}}$.
SOLUTION: Basis relations are
[b] $\begin{bmatrix} 4 \end{bmatrix}$ **[b**] $\begin{bmatrix} -6 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$\begin{aligned} [\mathbf{x}]_{\mathcal{C}} &= [\mathbf{3} \, \mathbf{b}_1 + \mathbf{b}_2]_{\mathcal{C}} = \mathbf{3} \, [\mathbf{b}_1]_{\mathcal{C}} + [\mathbf{b}_2]_{\mathcal{C}} \\ &= [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}] \begin{bmatrix} \mathbf{3} \\ \mathbf{1} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{4} & -\mathbf{6} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{3} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{6} \\ \mathbf{4} \end{bmatrix}_{\mathcal{C}} \quad \text{if } \mathbf{1} = \mathbf{1} \end{aligned}$$

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathsf{P}}{\leftarrow} \mathcal{B} \quad [\mathbf{x}]_{\mathcal{B}}$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

 $\textbf{Thm:} \ \text{For any vector } \textbf{x} \in V \text{, } [\textbf{x}]_{\mathcal{C}} = \ \mathcal{C} \stackrel{\textbf{P}}{\leftarrow} \mathcal{B} \quad [\textbf{x}]_{\mathcal{B}}$

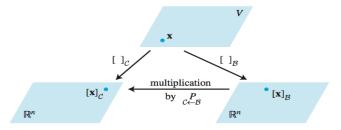


FIGURE 2 Two coordinate systems for V.

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathsf{P}}{\leftarrow} \mathcal{B} \quad [\mathbf{x}]_{\mathcal{B}}$

PROOF: Let $\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$ so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$.

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathsf{P}}{\leftarrow} \mathcal{B} \quad [\mathbf{x}]_{\mathcal{B}}$

PROOF: Let
$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$$
 so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$.

$$[\mathbf{x}]_{\mathcal{C}} = [\alpha_1 \, \mathbf{b}_1 + \dots + \alpha_n \, \mathbf{b}_n]_{\mathcal{C}}$$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathsf{P}}{\leftarrow} \mathcal{B} \quad [\mathbf{x}]_{\mathcal{B}}$

PROOF: Let
$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$$
 so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$.

$$[\mathbf{x}]_{\mathcal{C}} = [\alpha_1 \, \mathbf{b}_1 + \dots + \alpha_n \, \mathbf{b}_n]_{\mathcal{C}} = \alpha_1 \, [\mathbf{b}_1]_{\mathcal{C}} + \dots + \alpha_n \, [\mathbf{b}_n]_{\mathcal{C}}$$

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・) 見 の Q (C)
13/14

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathbf{P}} \mathcal{B} \ [\mathbf{x}]_{\mathcal{B}}$

PROOF: Let
$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$$
 so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$.

$$[\mathbf{x}]_{\mathcal{C}} = [\alpha_1 \, \mathbf{b}_1 + \dots + \alpha_n \, \mathbf{b}_n]_{\mathcal{C}} = \alpha_1 \, [\mathbf{b}_1]_{\mathcal{C}} + \dots + \alpha_n \, [\mathbf{b}_n]_{\mathcal{C}}$$

$$= [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \dots, [\mathbf{b}_n]_{\mathcal{C}}] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Consider two <u>bases</u> for vector space V:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}.$$

change-of-coordinates matrix: $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \stackrel{def}{=} [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \cdots, [\mathbf{b}_n]_{\mathcal{C}}].$

Thm: For any vector $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{C}} = \mathcal{C} \xleftarrow{\mathbf{P}} \mathcal{B} \ [\mathbf{x}]_{\mathcal{B}}$

PROOF: Let
$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n$$
 so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$.

$$[\mathbf{x}]_{\mathcal{C}} = [\alpha_1 \, \mathbf{b}_1 + \dots + \alpha_n \, \mathbf{b}_n]_{\mathcal{C}} = \alpha_1 \, [\mathbf{b}_1]_{\mathcal{C}} + \dots + \alpha_n \, [\mathbf{b}_n]_{\mathcal{C}}$$

$$= [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \dots, [\mathbf{b}_n]_{\mathcal{C}}] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \mathcal{C} \xleftarrow{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$

$$= \mathcal{C} \xleftarrow{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$

$$= \frac{\alpha_1 \, \mathbf{a}_1}{\alpha_1 \, \mathbf{a}_2} = \mathcal{C} \xleftarrow{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$

EX: Consider two bases for \mathcal{R}^2 : $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}.$

EX: Consider two bases for \mathcal{R}^2 : $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}, \quad \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}.$

with
$$\mathbf{b}_1 = \begin{bmatrix} -9\\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -5\\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\ -5 \end{bmatrix}$

Find $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} = [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}]$

 $\textbf{EX}: \text{ Consider two bases for } \mathcal{R}^2 \text{: } \mathcal{B} = \left\{ \textbf{b}_1, \textbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \textbf{c}_1, \textbf{c}_2 \right\}.$

with
$$\mathbf{b}_1 = \begin{bmatrix} -9\\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -5\\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\ -5 \end{bmatrix}$

 $\mathsf{Find} \quad \mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} \ = [[\mathbf{b}_1]_{\mathcal{C}} \,, [\mathbf{b}_2]_{\mathcal{C}}]$

SOLUTION: Let
$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$
. Then

$$\mathbf{b}_1 = \alpha_1 \, \mathbf{c}_1 + \alpha_2 \, \mathbf{c}_2$$

 $\textbf{EX}: \text{ Consider two bases for } \mathcal{R}^2: \ \mathcal{B} = \{\textbf{b}_1, \textbf{b}_2\}\,, \quad \mathcal{C} = \{\textbf{c}_1, \textbf{c}_2\}\,.$

with
$$\mathbf{b}_1 = \begin{bmatrix} -9\\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -5\\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\ -5 \end{bmatrix}$

Find $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} = [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}]$

SOLUTION: Let
$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$
. Then
 $\mathbf{b}_1 = \alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$

 $\textbf{EX}: \text{ Consider two bases for } \mathcal{R}^2 \text{: } \mathcal{B} = \left\{ \textbf{b}_1, \textbf{b}_2 \right\}, \quad \mathcal{C} = \left\{ \textbf{c}_1, \textbf{c}_2 \right\}.$

with
$$\mathbf{b}_1 = \begin{bmatrix} -9\\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -5\\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\ -5 \end{bmatrix}$

Find $\mathcal{C} \stackrel{\mathsf{P}}{\leftarrow} \mathcal{B} = [[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}]$

SOLUTION: Let
$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$
. Then
 $\mathbf{b}_1 = \alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \Longrightarrow \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix}^{-1} \mathbf{b}_1.$

therefore $[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix}^{-1} \mathbf{b}_1$, and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix}^{-1} \mathbf{b}_2$.

$$\begin{array}{rcl} \mathbf{P} \\ \mathcal{C} \leftarrow \mathcal{B} &= & \left[[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}} \right] = \left[\begin{array}{cc} \mathbf{c}_1 & \mathbf{c}_2 \end{array} \right]^{-1} \left[\begin{array}{cc} \mathbf{b}_1 & \mathbf{b}_2 \end{array} \right] \\ &= & \left[\begin{array}{cc} 1 & 3 \\ -4 & -5 \end{array} \right]^{-1} \left[\begin{array}{cc} -9 & -5 \\ 1 & -1 \end{array} \right] = \left[\begin{array}{cc} 6 & 4 \\ -5 & -3 \end{array} \right] \\ & \end{array}$$

14/14