§3.3 Determinant as Area

Thm: For A € R?>*?, the area of the parallelogram determined by
the columns of A is |det (A)].
PROOF:

» If Ais not invertible, then |det (A)] = 0. Columns of A are
parallel, hence parallelogram becomes a line segment, with
area = 0.
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§3.3 Determinant as Area

Thm: For A € R?>*?, the area of the parallelogram determined by
the columns of A is |det (A)|.
PROOF:
» If Ais not invertible, then |det (A)] = 0. Columns of A are
parallel, hence parallelogram becomes a line segment, with
area = 0.
» We now assume If A is invertible in the rest of the proof.
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§3.3 Determinant as Area

Thm: For A € R?*?, the area of the parallelogram determined by
the columns of A is |det (A)].

PROOF: If A = [ g 2 ] is diagonal. Then |det (A)| = |ad|.

»

2]

[5]
(0]
FIGURE 1

Area — |lad]-

Area of parallelogram is also |ad]|.

)
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§3.3 Determinant as Area

Thm: For A € R?*2, the volume of the parallelogram determined
by the columns of A is |det (A)].

PROOF: Let A € R?*2 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.
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§3.3 Determinant as Area

Thm: For A € R?*2, the volume of the parallelogram determined
by the columns of A is |det (A)].

PROOF: Let A € R?*2 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.

» one row + ¢ X another —> same row
This operation does not change |det (A)|.

» Now only need to prove this operation does not change area
either.
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let A=[a; ax |, and B=[a; ax+cay |. Then
|det (A)| = |det (B)|

|
|
|
|
"
0

cal

FIGURE 2 Two parallelograms of equal area.

» L is a line through 0 and aj.
» ap + L is a line through ay and parallel to L.

» Both parallelograms have same base and height,
hence same area.

40



§3.3 Determinant as Volume

Thm: For A € R3*3, the volume of the parallelepiped determined

by the columns of A is |det (A)].
a 00

Proor: f A= | 0 b 0 | isdiagonal. Then
0 0 ¢

\det (A)| = |abc].

Volume of parallelepiped is also |abc|.
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§3.3 Determinant as Volume

Thm: For A € R3*3, the volume of the parallelepiped determined
by the columns of A is |det (A)].

PROOF: Let A € R3*3 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.
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§3.3 Determinant as Volume

Thm: For A € R3*3, the volume of the parallelepiped determined
by the columns of A is |det (A)].

PROOF: Let A € R3*3 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.

» one row + ¢ X another —> same row
This operation does not change |det (A)|.

» Now only need to prove this operation does not change area
either.
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let A=[a; a; a3 ],and B=[a; ax+ca; az|. Then
|det (A)| = |det (B)|

»)

W
0‘\
xcﬁ

0 3

FIGURE 4 Two parallelepipeds of equal volume.

» Base in Span (a1, as3).

» ap + Span(aj, a3) is a plane parallel Span (a1, a3).

» Both parallelepipeds have same base and height,
hence same volume.
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Vector Space and Subspace

» Vector Space is a set V of objects (vectors)
» OPERATIONS: addition and scalar multiplication

» Axioms below work for all u,v € V and all scalars.

1. The sum of u and v, denoted by u + v,isin V.
2Z.u+v=v+u

3. u+v)+w=u+(v+w).

4. There is a zero vector 0 in V such thatu + 0 = u.

5. Foreach u in V, there is a vector —u in ¥ such thatu + (—u) = 0.

6. The scalar multiple of u by ¢, denoted by cu, is in V.
7. c(a+v) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u.

40



Vector Space: Example (1)

The sum of u and v, denoted by w + v, isin V.
u+v=v+u

u+v)+w=u+(v+w).

There is a zero vector 0 in V such thatu + 0 = u.

For each uin V, there is a vector —u in V such that u + (—u) = 0.

The scalar multiple of u by ¢, denoted by cu, isin V.
cu+v) =cu+cv.

(c+du=cu+du

c(du) = (cd)u.

lu=u
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Vector Space: Example (I1)

1. The sum of u and v, denoted by u + v,isin V.
2. u+v=v+uw
o (u+v)+w=u+(v+w).
4. There is a zero vector 0 in ¥ such thatu + 0 = u.
5. Foreach u in V, there is a vector —u in V such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, isin V.
7. c(u+v¥) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u.

V = P3, set of all polynomials of degree at most 3, of form:

p(t) =ao+art+at?+ ast’
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Vector Space: Example (I1)

. The sum of u and v, denoted by u + v, isin V.

ut+v=viuw

+v)+w=u+(v+w).

There is a zero vector 0 in ¥ such thatu 4+ 0 = u.

. Foreach uin V, there is a vector —u in ¥ such thatu 4 (—u) = 0.
. The scalar multiple of u by ¢, denoted by cu, isin V.

. c(u+v¥) =cu+ev.

. (e +du=cu+du

. ¢(du) = (cd)u.

. lu=u.

- RS - NV R S O

[
=

V = P3, set of all polynomials of degree at most 3, of form:
p(t) =ao+art+at?+ ast’

> ADDITION: Let q(t) = by + by t + by t? + b3tS.

(p+a)(t) & (a0 + bo)+(a1 + br) t+(a2 + by) 2+(a3 + b3) 2 € P3

» SCALAR MULTIPLICATION:

(ap) (1) E (vag) + (var) t+ (wan) 2+ (aas) 3 € Ps
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Vector Space: Example (111)

1. The sum of u and v, denoted by u + v,isin V.
2.u+v=v+u
3. u4v)+w=u+(v+w).
4. There is a zero vector 0 in V such thatu + 0 = u.
5. Foreach uin V, there is a vector —u in ¥ such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, is in V.
7. c(u+v) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u.

C = set of all continuous functions:
Sums, scalar multiples of continuous functions are continuous functions.

11/40



Vector Space is a set

If needles were vectors, then the cactus would be vector space.

Vectors can point to all possible directions, have all possible sizes.

Qe
12/40



Subspace
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Subspace

Subspace H is a Vector Space
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Subspace

Subspace H is a Vector Space that is subset of a Vector Space V: H C V.

13 /40



Subspace: Example (1)

» H = P3, set of all polynomials of degree at most 3, of form:

p(t) =ag+ a t+ ar t? + azt’.

14 /40



Subspace: Example (1)

» H = P3, set of all polynomials of degree at most 3, of form:

p(t) =ag+ a t+ ar t? + azt’.

» V =P, set of all polynomials of form:

q(t)=ao+art+at?+---+apt", n>0isan integer.
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Subspace: Example (1)

» H = P3, set of all polynomials of degree at most 3, of form:

p(t) =ag+ a t+ ar t? + azt’.

» V =P, set of all polynomials of form:

q(t)=ao+art+at?+---+apt", n>0isan integer.

Both H and V are vector spaces, with H C V. So H is a subspace.

14 /40



Subspace is Vector Space (1)
Let H C V; Let both H and V be vector spaces.
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Subspace is Vector Space (1)
Let H C V; Let both H and V be vector spaces.

» addition and scalar multiplication defined on both H and V

» Axioms work for all u,v € H and all scalars.
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Subspace is Vector Space (1)
Let H C V; Let both H and V be vector spaces.

» addition and scalar multiplication defined on both H and V

» Axioms work for all u,v € H and all scalars.

. The sum of u and v, denoted by u + v, isin V.

.u+vVv=v+u

(w4t v)+w=u+(v+w).

There is a zero vector 0 in V such thatu 4+ 0 = u.

. Foreachuin V, there is a vector —u in V such that u + (—u) = 0.
The scalar multiple of u by ¢, denoted by cu, isin V.
clu+v)=cu+ecv

. (c+du=cu+du

. ¢(du) = (cd)u.

Iu=u

[y
=

’Axioms 1.) and 6.) need to work for H
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Subspace is Vector Space (I1)

Let H C V. Let V be vector space. H is a subspace of V if
» 0cH.

» For any scalar cand anyu € H, = cu € H.
» Foranyu,ve H, = u+veH.
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Subspace Example (Il): solutions to homogeneous
equations

Let A€ R™*" and let H be set of all solutions to Ax = 0.
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Subspace Example (Il): solutions to homogeneous
equations

Let A€ R™*" and let H be set of all solutions to Ax = 0.

» 0ecH.
» For any scalar cand anyu € H, = cu € H.
» Foranyu,ve H, = u+veH.

So H is a subspace of
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Subspace Example (Il): solutions to homogeneous
equations

Let A€ R™*" and let H be set of all solutions to Ax = 0.

» 0ecH.
» For any scalar cand anyu € H, = cu € H.
» Foranyu,ve H, = u+veH.

So H is a subspace of R"
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Subspace Example (I11): solutions to differential equation
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Subspace Example (I11): solutions to differential equation

Let H be set of solutions to differential equation:
y'+y =0,

where y = y (t) is a function of variable ¢.
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Subspace Example (I11): solutions to differential equation

Let H be set of solutions to differential equation:
y'+y=0,
where y = y (t) is a function of variable ¢.
» y(t)=0€H.
» For any scalar c and any y (t) € H, = cy(t) € H.
> Forany yi (t),y2(t) € H, = y1(t) + y2(t) € H.

So H is a subspace of
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Subspace Example (I11): solutions to differential equation

Let H be set of solutions to differential equation:
y'+y=0,
where y = y (t) is a function of variable ¢.
» y(t)=0€H.
» For any scalar c and any y (t) € H, = cy(t) € H.
> Forany yi (t),y2(t) € H, = y1(t) + y2(t) € H.

So H is a subspace of C : set of all continuous functions.

18 /40



Subspace

Thm: Let vy,--- , v, be vectors in Vector Space V. Then
Span (vy,- - ,Vp) is a subspace of V.
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Subspace

Thm: Let vy,--- , v, be vectors in Vector Space V. Then
Span (vy,- - ,Vp) is a subspace of V.

SKETCHY PROOF: Let u,v € Span (vy, - ,vp).

Then u, v are linear combinations of vy, --- ,vp,

so are cu,u + V.
Hence cu,u+v € Span(vy,--- ,v,). QED

19 /40



Subspace Example (IV): solutions to differential equation
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Subspace Example (IV): solutions to differential equation

Let H be set of solutions to differential equation:
Y'+y=0, (0

where y = y (t) is a function of variable t.
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Subspace Example (IV): solutions to differential equation

Let H be set of solutions to differential equation:
Y'+y=0, (0

where y = y (t) is a function of variable t.

» Two linearly independent solutions to (¢):

yi(t)=sin(t), y2(t) =cos(t).
» Solution subspace

H = Span (sin (t),cos(t)).

20 /40



§4.2 Null Spaces, Column Spaces

Let A=[ai, ---, a, | €R™"
» The null space of A, denoted Nul A, is set of solutions to
Ax = 0:

Nul A% {x |[x € R"and Ax=01.
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§4.2 Null Spaces, Column Spaces

Let A=[ai, ---, a, | €R™"
» The null space of A, denoted Nul A, is set of solutions to
Ax = 0:

Nul A% {x |[x € R"and Ax=01.

» The column space of A, denoted Col A, is set of linear
combinations of a1, -+ ,an:

Col A% Span(ai, - ,an).

21 /40



Example: Null Spaces, Column Spaces

1 -3 =2
LetA:[_5 9 1 ]:[al, as, a3]ER2X3.

22 /40



Example: Null Spaces, Column Spaces

1 -3 =2
LetA:[_5 9 1 ]:[al, as, 33]€R2X3.

1 -3 -2

» row echelon form: A ~ [ 0 -6 —9 } with free variable xs.

5
Solutionsto Ax=0: x = X‘?’{ 3 ]



Example: Null Spaces, Column Spaces
1 -3 -2
LetA:[_5 9 1 ]:[al, as, 33]€R2X3.

» row echelon form: A ~ [ (1) :2 :S } with free variable xs.
N 5
Solutions to Ax =0: x = - 3 .
2 -2

(-
Nul A = Span 3
-2
ColA = Span([_lk_)},{_g?)],[_f]) (CRz)




Example: Null Spaces, Column Spaces
1 -3 -2
LetA:[_5 9 1 ]:[al, as, 33]€R2X3.

» row echelon form: A ~ [ (1) :2 :S } with free variable xs.
N 5
Solutions to Ax =0: x = - 3 .
2 -2

con — sun([ 4] [7] [ 7]) e



Thm: Null Space is a subspace

PROOF: Let A € R™*". Want to show Nul A is a subspace.
» The zero vector 0 € Nul A: because A0 = 0.
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Thm: Null Space is a subspace

PROOF: Let A € R™*". Want to show Nul A is a subspace.
» The zero vector 0 € Nul A: because A0 = 0.

» For any scalar ¢ and any u € Nul A,
— Au=0;A (cu) =0. So cu € Nul A
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Thm: Null Space is a subspace

PROOF: Let A € R™*". Want to show Nul A is a subspace.
» The zero vector 0 € Nul A: because A0 = 0.

» For any scalar ¢ and any u € Nul A,
— Au=0;A (cu) =0. So cu € Nul A

» For any u,v € NulA, = Au=Av=0;A(u+v)=0.
So u+v € Nul A

Hence Nul A is a subspace of

23 /40



Thm: Null Space is a subspace

PROOF: Let A € R™*". Want to show Nul A is a subspace.
» The zero vector 0 € Nul A: because A0 = 0.

» For any scalar ¢ and any u € Nul A,
— Au=0;A (cu) =0. So cu € Nul A

» For any u,v € NulA, = Au=Av=0;A(u+v)=0.

So u+ v € Nul A.

Hence Nul A is a subspace of R".

23 /40



Kernel and Range of Linear Transform

DEF: A linear transformation 7 from vector space V into vector
Wis arule: x € V= T (x) € W, such that

Tu+v) = T(u+T(v), forall uveV
T(cu) = c¢T(u), forall u and for all scalar ¢

24 /40



Kernel and Range of Linear Transform

DEF: A linear transformation 7 from vector space V into vector
Wis arule: x € V= T (x) € W, such that

Tu+v) = T(u+T(v), forall uveV

T(cu) = c¢T(u), forall u and for all scalar ¢
EX: Let V be set of all second-order differentiable functions,
T(y)=y"+y, where y=y(t)e V.

T is a linear transformation.

24 /40



Kernel and Range of Linear Transform
Let T: xe V — T (x) € W be a linear transformation.

» The Kernel of T is set of vectors u € V so that
T(u)=0CW.
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Kernel and Range of Linear Transform

Let T: xe V — T (x) € W be a linear transformation.

» The Kernel of T is set of vectors u € V so that
T(u)=0CW.
» The Range of T is set of vectors T (u) C W.
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Kernel and Range of Linear Transform

Let T: xe V — T (x) € W be a linear transformation.

» The Kernel of T is set of vectors u € V so that
Tu=0CW.
» The Range of T is set of vectors T (u) C W.

in
]
;1
I{gf_fl/"‘*———»——\_\_\_
P
v . .
Kernel is a Range is a
subspace of V subspace of W

FIGURE 2 Subspaces associated with
a linear transformation.
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§4.3 Linearly independent sets; Bases

f .
Let S % {v1,v2, -+ ,vp} be a set of vectors in vector space V.
» S is linearly dependent if there exists a non-trivial solution
to (4):
vict+voo+ - +vyc=0. (0)

26
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§4.3 Linearly independent sets; Bases

f :
Let S % {v1,v2, -+ ,vp} be a set of vectors in vector space V.

» S is linearly dependent if there exists a non-trivial solution
to (4):
vict+voo+ - +vyc=0. (0)

» S is linearly independent if there exists only trivial solution
to (¢).
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§4.3 Linearly independent sets; Bases

f :
Let S % {v1,v2, -+ ,vp} be a set of vectors in vector space V.

» S is linearly dependent if there exists a non-trivial solution
to (4):
vict+voo+ - +vyc=0. (0)

» S is linearly independent if there exists only trivial solution
to (¢).

» Assume p > 2 and v; # 0.
S is linearly independent <=
some v; (with j > 1) is linear combination of vq,vp,--- ,vj_1.
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Linearly independent sets: Examples

» The set {sin(x), cos(x),1} is linearly independent:

sin(x) ¢; + cos(x) 2 + c3 =0, = cag=0=c=0.
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Linearly independent sets: Examples

» The set {sin(x), cos(x),1} is linearly independent:

sin(x) c; + cos(x) cx + 3 =0, —cg=06=c=0.

» The set {sin’(x), cos?(x),1} is linearly dependent:

sin®(x) + cos?(x) + (—1)-1=0.

27 /40



Basis for Vector Space

Let H be a subspace of vector space V.
Indexed set of vectors B = {by,by,--- ,b,} C V is basis for H if

> vectors in B are linearly independent.
» H=Span(by,by,---,bp).
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Basis for Vector Space

Let H be a subspace of vector space V.
Indexed set of vectors B = {by,by,--- ,b,} C V is basis for H if

> vectors in B are linearly independent.
» H=Span(by,by,---,bp).

1 —4 —2
EX: Let v; = 0],v= 1 |(,vs= 1 | . Then
—2 7 5
1 —4 -2 4 -2
A i v vsl=| 0 1 1%L |0 1 1
-2 7 5 0 0 2

» A e R3*3 has 3 pivot rows, thus is invertible.

28 /40



Basis for Vector Space

Let H be a subspace of vector space V.
Indexed set of vectors B = {by,by,--- ,b,} C V is basis for H if

> vectors in B are linearly independent.
» H=Span(by,by,---,bp).

1 —4 -2

EX: Let v; = 0],v= 1 |(,vs= 1 | . Then
-2 7 5

1 -4 -2 1 —4 -2

A déf [Vl, Vo, V3] _ 0 1 1 echelon 0 1 1

o
o
N

-2 7 5

» A e R3*3 has 3 pivot rows, thus is invertible.

» Column vectors vy, Vo, v3 linearly independent and span R3.
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Basis for Vector Space

Let H be a subspace of vector space V.
Indexed set of vectors B = {by,by,--- ,b,} C V is basis for H if

> vectors in B are linearly independent.
» H=Span(by,by,---,bp).

1 —4 -2

EX: Let v; = 0],v= 1 |(,vs= 1 | . Then
-2 7 5

1 -4 -2 1 —4 -2

A déf [Vl, Vo, V3] _ 0 1 1 echelon 0 1 1

o
o
N

-2 7 5

» A e R3*3 has 3 pivot rows, thus is invertible.
» Column vectors vy, Vo, v3 linearly independent and span R3.

» Therefore must be basis for R3.

28 /40



When vectors seem to span brain

= OSDormee, Moy | De exmcused? Wy Deain is full™
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When vectors seem to span brain

il Jf}u,f}ﬁd
[ i S—

may | e excused? My beain is full™

But they don't
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Spanning Set Theorem (1)

1 —4 -2
EX: Let vi = 01],v= 1 |,vs= 1| and
-2 7 3

H = Span (v1,v2,v3). Show that H = Span (v, v2).
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Spanning Set Theorem (1)

1 —4 -2
EX: Let vi = 01],v= 1 |,vs= 1| and
-2 7 3

H = Span (v1,v2,v3). Show that H = Span (v, v2).

SOLUTION: Obviously Span (vi,v2) C H. So we only need to
show H C Span (vi,vy).

1 -4 =2 1 -4 -2
Note [Vl, Vo, V3] = 0 1 1 echelon 0 1 )
-2 7 3 0 0 ©

Only 2 pivots, with 37 column non-pivot column: vz = 2vj + vo.
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Spanning Set Theorem (1)

1 —4 -2
EX: Let vi = 01],v= 1 |,vs= 1| and
-2 7 3

H = Span (v1,v2,v3). Show that H = Span (v, v2).

SOLUTION: Obviously Span (vi,v2) C H. So we only need to
show H C Span (vi,vy).

1 -4 -2 1 —4 -2
Note [vi,va,vs]=| 0 1 1|°LL 1o 1 1
2 7 3 0 0 0

Only 2 pivots, with 3rd

Any vector x € Span (v1,v2,v3) is a linear combination of vy, vy, v3

column non-pivot column: vz = 2v; + vy.
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Spanning Set Theorem (1)

1 —4 -2
EX: Let vi = 01],v= 1 |,vs= 1| and
-2 7 3

H = Span (v1,v2,v3). Show that H = Span (v, v2).

SOLUTION: Obviously Span (vi,v2) C H. So we only need to
show H C Span (vi,vy).

1 -4 -2 1 —4 -2
Note [vi,va,vs]=| 0 1 1|°LL 1o 1 1
2 7 3 0 0 0

Only 2 pivots, with 3rd

Any vector x € Span (v1,v2,v3) is a linear combination of vy, vy, v3
X = CVit+CoVy+C3v3
= avitaov+a (2vi+v)
= (Cl + 2 C3)V1 + (C2 + C3) v> € Span (V1,V2) QED

column non-pivot column: vz = 2v; + vy.
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Spanning Set Theorem (lI)

Let S = {vi,vo,--- ,vp} C vector space V, H = Span (vi,v2, - ,Vvp).

(1) If for some 1 < k < p, vector vi is a linear combination of
_ . o def a .
remaining vectors in S *s \ {vk}, then S still spans H.
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Spanning Set Theorem (lI)

Let S = {vi,vo,--- ,vp} C vector space V, H = Span (vi,v2, - ,Vvp).

(1) If for some 1 < k < p, vector vi is a linear combination of
remaining vectors in S%s \ {vi}, then S still spans H.
(2) If H # {0}, then some subset of S is a basis for H.
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Spanning Set Theorem (lI)

Let S = {vi,vo,--- ,vp} C vector space V, H = Span (vi,v2, - ,Vvp).

(1) If for some 1 < k < p, vector vi is a linear combination of
remaining vectors in S%s \ {vi}, then S still spans H.
(2) If H # {0}, then some subset of S is a basis for H.

PROOF OF (1): Given any vector x, it must be a linear
combination of vectors in S:

X=cvit+ova+---+CpVp, (6)
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Spanning Set Theorem (lI)

Let S = {vi,vo,--- ,vp} C vector space V, H = Span (vi,v2, - ,Vvp).

(1) If for some 1 < k < p, vector vi is a linear combination of
remaining vectors in S%s \ {vi}, then S still spans H.
(2) If H # {0}, then some subset of S is a basis for H.

PROOF OF (1): Given any vector x, it must be a linear
combination of vectors in S:

X=cvit+ovat -+ CpVp, (6)
Just need to show x is a linear combination of vectors in S. Indeed

since Vi = ajVi+- - Fak—1Vk_1+ak+1 Vkt1+ - -+apVp, (¢) becomes
x = (ca+ckar)vi+ -+ (ck—1+ Ck ak—1) Vk—1
+ (k1 + Ck k1) Vigr + -+ (cp + i ap) vp.
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Spanning Set Theorem (111)
Let S = {vi,v2, - ,vp} C vector space V, H = Span (vi,vo,- - ,Vp).

(1) If for some 1 < k < p, vector vi is a linear combination of
remaining vectors in S¥s \ {vi}, then & still spans H.
(2) If H # {0}, then some subset of S is a basis for H.
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Spanning Set Theorem (111)
Let S = {vi,v2, - ,vp} C vector space V, H = Span (vi,vo,- - ,Vp).

(1) If for some 1 < k < p, vector vi is a linear combination of

remaining vectors in S¥s \ {vi}, then & still spans H.
(2) If H # {0}, then some subset of S is a basis for H.
PROOF OF (2):

(a) If vectors in S are linearly independent, then S already basis
for H.
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Spanning Set Theorem (111)
Let S = {vi,v2, - ,vp} C vector space V, H = Span (vi,vo,- - ,Vp).

(1) If for some 1 < k < p, vector vi is a linear combination of

remaining vectors in S¥s \ {vi}, then & still spans H.
(2) If H # {0}, then some subset of S is a basis for H.
PROOF OF (2):

(a) If vectors in S are linearly independent, then S already basis
for H.

(b) Otherwise delete a dependent vector from S to get a reduced
spanning set.
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Spanning Set Theorem (111)
Let S = {vi,v2, - ,vp} C vector space V, H = Span (vi,vo,- - ,Vp).

(1) If for some 1 < k < p, vector vi is a linear combination of

remaining vectors in S¥s \ {vi}, then & still spans H.
(2) If H # {0}, then some subset of S is a basis for H.
PROOF OF (2):

(a) If vectors in S are linearly independent, then S already basis
for H.

(b) Otherwise delete a dependent vector from S to get a reduced
spanning set.

(c) Since H # {0}, repeat steps (a-b) to continue reducing
spanning set until it is linearly independent and hence a basis.
QED
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Example: Computing bases for Nul A and Col A

1 4 0 2 -1
3 12 1 5 5
Let A:[al a> a3z au a5]: 5 8 1 3 5
5 20 2 8 8
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Example: Computing bases for Nul A and Col A

1 4 0 2 -1
3 12 1 5 5
Let A:[al a> a3z au a5]: 5 8 1 3 5
5 20 2 8 8
1] 4 0o 2 -1
> ComputeAetﬁgn 00 -1 8
00 0 0 [-4]
00 O 0 0
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Example: Computing bases for Nul A and Col A

1 4 0 2 -1
3 12 1 5 5
Let A:[al a> a3z au 35]: 5 8 1 3 5
5 20 2 8 8
4 0 2 -1
> ComputeAetﬁgn 00 -1 8
00 0 O

00 O 0 0
» Pivot columns are columns 1,3,5: Col A = Span (a1, as,as).
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Example: Computing bases for Nul A and Col A

1 4 0 2 -1
3 12 1 5 5
Let A:[al a> a3z au a5]: 5 8 1 3 5
5 20 2 8 8
4 0 2 -1
> ComputeAetﬁgn 00 -1 8
00 0 O

00 0 O 0
» Pivot columns are columns 1,3,5: Col A = Span (a1, as,as).
> Free columns are columns 2, 4: Letting Ax = 0 gives

—4 -2 —4 -2

1 0 1 0

X = X 0 |+x4 1 |. = Nul A= Span 0|, 1
0 1 0 1

0 0 0 0
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84.4 Coordinate Systems (I)

The Unique Representation Theorem

LetB=1{by,...,h,} beabasis for a vector space V. Then for each xin V, there
exists a unique sef of scalars ¢y, ..., ¢, such that

X=Clb1+"'+0nbn (1)
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84.4 Coordinate Systems (I)

The Unique Representation Theorem

LetB=1{by,...,h,} beabasis for a vector space V. Then for each xin V, there
eXists a unique set of scalars ¢y, ..., ¢, such that

=01b1+"'+0nbn (1)

PROOF: Since B spans V, we write x as a linear combination
x=dyb;+ -+ d,by, (2)

for scalars dq,--- , d,. To show uniqueness, we now show
equations (1) and (2) are same. Indeed,

0=x—x=(dh—ci)bi+ -+ (dr, — cn) by
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84.4 Coordinate Systems (I)

The Unique Representation Theorem

LetB=1{by,...,h,} beabasis for a vector space V. Then for each xin V, there
eXists a unique set of scalars ¢y, ..., ¢, such that

=01b1+"'+0nbn (1)

PROOF: Since B spans V, we write x as a linear combination
x=dyb;+ -+ d,by, (2)

for scalars dq,--- , d,. To show uniqueness, we now show
equations (1) and (2) are same. Indeed,

0=x—x=(dh—ci)bi+ -+ (dr, — cn) by

Since B is a basis, vectors by, - - - | b, must be linearly independent.

Hence
dl—Clz'--:dn—ano. QED
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84.4 Coordinate Systems (II)

Suppose B = {by,...., by} is a basis for V and xis in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..,
such that X = by +++ 4 ¢,by.

&
Coordinate vector of x is  [x]; %f |: : } .

Cn
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84.4 Coordinate Systems (II)

Suppose B = {by,...., by} is a basis for V and xis in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..,
such that X = by +++ 4 ¢,by.

a
Coordinate vector of x is  [x]; %f ol
Cn
EXAMPLE: Let basis B = {bj, by} for R?*2 with

2 -1 . 4
bl_[l]’bZ_[ 1 ] Find [X]Bforvectorx—[S].
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84.4 Coordinate Systems (II)

Suppose B = {by,...., by} is a basis for V and xis in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..,
such that X = by +++ 4 ¢,by.

a
Coordinate vector of x is  [x]; %f ol
Cn
EXAMPLE: Let basis B = {bj, by} for R?*2 with

2 -1 . 4
bl_[l]’bZ_[ 1 ] Find [X]Bforvectorx—[S].

SLN: Let x = c1by+ by,
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84.4 Coordinate Systems (II)

Suppose B = {by,...., by} is a basis for V and xis in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..,
such that X = by +++ 4 ¢,by.

a
Coordinate vector of x is  [x]; %f ol
Cn
EXAMPLE: Let basis B = {bj, by} for R?*2 with

2 -1 . 4
bl_[l]’bZ_[ 1 ] Find [X]Bforvectorx—[S].

SLN: Let x = c1by+ by,

In matrix form 4 = 2 -1 “
5 - 1 1 o |

e b= 2 ]=[2 217 [2]=[2].
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84.4 Coordinate Systems (lII)
EXAMPLE: Let basis B = {by, by} with

2 -1 4
b1=[1],b2=[ 1 ] Forvectorx:[5]

[X]B:[g:|‘
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84.4 Coordinate Systems (lII)
EXAMPLE: Let basis B = {b1, b2} with

2 -1 4
b1=[1],b2=[ 1 ] Forvectorx:[5]

[X]B:"g—“

b,

FIGURE 4

The B-coordinate vector of x is
(3.2).
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84.4 Coordinate Systems (IV)

Let indexed set B = {by,--- ,b,} be basis for R", and let x € R".
The vector equation

x=cb1+---+cyb,
is equivalent to
def
x=Pg [x]z, where Pg = [ by, ---, b, ]

Py is change-of-coordinates matrix

37 /40



§4.4 Coordinate Systems (V)

Let indexed set B = {b;,--- ,b,} be basis for vector space V, and
let x € V. The mapping x — [x]; connects V to R".
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§4.4 Coordinate Systems (V)

Let indexed set B = {b;,--- ,b,} be basis for vector space V, and
let x € V. The mapping x — [x]; connects V to R".

FIGURE 5 The coordinate mapping from V' onto R”.
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Example: x — [x];

Let V = P3, set of all polynomials of degree at most 3, of form:

p(t):ao+alt+agt2+a3t3.

Let indexed set B = {1, t, t2, t3} be basis for P3. Then

[pls = e R*.
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Example: x — [x];

Let V = P3, set of all polynomials of degree at most 3, of form:

p(t)=ap+art+ a 2 + azts.

Let indexed set B = {1, t, 2, t3} be basis for P3. Then

e R*.

[pls =
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Let B={by,..., by} be a basis for a vector space V. Then the coordinate
mapping X+ [ s  oe-to-0ne inear tansformation fom ¥ onto R',
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Let B=1{b,....,b,} be a basis for a vector space V. Then the coordinate
mapping X+ [ s  oe-to-0ne inear tansformation fom ¥ onto R',

PRrROOF: Take any two vectors u,v € V. Then

u =
C1 i

so that [u]z =
Cn

)

vlg =

ciby + -+ by, v=diby + -+ + dybp,

d1

dn

Since u+v={(ci+di)by+---+(ch+ dn)bp,

a+d ]

It follows [u+v]z =

C,,—l—d,,_

a
+

Cn

dr

= [uls+lvls
dn
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Let B=1{b,....,b,} be a basis for a vector space V. Then the coordinate
mapping X+ [ s  oe-to-0ne inear tansformation fom ¥ onto R',

PRrROOF: Take any two vectors u,v € V. Then

u =
C1 i

so that [u]z =
Cn

)

ciby + -+ by, v=diby + -+ + dybp,

Since u+v={(ci+di)by+---+(ch+ dn)bp,

a+d ]

It follows [u+v]z =

C,,—l—d,,_

Similarly (book) [yu]z =7 [u]g

d1
vlg =
dn
1 d1
+| ¢ | =ulgtvls
Ch d,

for any scalar 7.
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Let B=1{b,....,b,} be a basis for a vector space V. Then the coordinate
mapping X+ [ s  oe-to-0ne inear tansformation fom ¥ onto R',

PROOF: Take any two vectors u,v € V. Then
u = abi+---+ciby, v=diby +---+dyby,

c | d1
sothat [ulz=| : |, [vlz=
cn | dn
Since u+v=/(ci+d)by+ -+ (ch+dy) by,
c +dr | 1 d1
It follows [u+ v]z = : =1 [+| | =gtz
cn+dp | Cn dp

Similarly (book) [yu]g =~ [u]z for any scalar 7.

Exercises 23/24 for one-to-one proof. 40740



