Thm: For $A \in \mathcal{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\det(A)|$. PROOF:

If A is not invertible, then $|\det(A)| = 0$. Columns of A are parallel, hence parallelogram becomes a line segment, with $area = 0$.

Thm: For $A \in \mathcal{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\det(A)|$. PROOF:

- If A is not invertible, then $|\det(A)| = 0$. Columns of A are parallel, hence parallelogram becomes a line segment, with $area = 0$.
- \triangleright We now assume If A is invertible in the rest of the proof.

Thm: For $A \in \mathcal{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\det(A)|$. PROOF: If $A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ 0 d $\Big]$ is diagonal. Then $|\det(A)| = |a d|$.

 $2/40$

イロト 不優 ト 不思 ト 不思 トー 温

Area of parallelogram is also $|ad|$.

Thm: For $A \in \mathcal{R}^{2 \times 2}$, the volume of the parallelogram determined by the columns of A is $|\det(A)|$. PROOF: Let $A \in \mathbb{R}^{2 \times 2}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

 \blacktriangleright interchange two columns.

This operation does not change $|\det(A)|$ or area of the parallelogram.

Thm: For $A \in \mathcal{R}^{2 \times 2}$, the volume of the parallelogram determined by the columns of A is $|\det(A)|$. PROOF: Let $A \in \mathbb{R}^{2 \times 2}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

 \blacktriangleright interchange two columns.

This operation does not change $|\det(A)|$ or area of the parallelogram.

- **►** one row $+ c \times$ another \implies same row This operation does not change $|\det(A)|$.
	- \triangleright Now only need to prove this operation does not change area either.

イロト 不優 トメ 君 トメ 君 トー 君 し

Let
$$
A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}
$$
, and $B = \begin{bmatrix} a_1 & a_2 + c a_1 \end{bmatrix}$. Then
 $|\det(A)| = |\det(B)|$

FIGURE 2 Two parallelograms of equal area.

- In L is a line through 0 and a_1 .
- \blacktriangleright a₂ + L is a line through a₂ and parallel to L.
- \triangleright Both parallelograms have same base and height, hence same area.

§3.3 Determinant as Volume

Thm: For $A \in \mathcal{R}^{3 \times 3}$, the volume of the parallelepiped determined by the columns of A is $|\det(A)|$. PROOF: If $A =$ $\sqrt{ }$ $\overline{1}$ a 0 0 0 b 0 0 0 c 1 is diagonal. Then $|\det(A)| = |abc|$.

Volume of parallelepiped is also $|abc|$.

K ロ X K @ X K 할 X K 할 X (할 5 / 40

§3.3 Determinant as Volume

Thm: For $A \in \mathcal{R}^{3 \times 3}$, the volume of the parallelepiped determined by the columns of A is $|\det(A)|$. PROOF: Let $A \in \mathbb{R}^{3 \times 3}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

 \blacktriangleright interchange two columns.

This operation does not change $|\det(A)|$ or area of the parallelogram.

§3.3 Determinant as Volume

Thm: For $A \in \mathcal{R}^{3 \times 3}$, the volume of the parallelepiped determined by the columns of A is $|\det(A)|$. PROOF: Let $A \in \mathbb{R}^{3 \times 3}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

 \blacktriangleright interchange two columns.

This operation does not change $|\det(A)|$ or area of the parallelogram.

- **►** one row $+ c \times$ another \implies same row This operation does not change $|\det(A)|$.
	- \triangleright Now only need to prove this operation does not change area either.

 $\mathbf{A} \equiv \mathbf{A} + \math$

Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$, and $B = \begin{bmatrix} a_1 & a_2+c\,a_1 & a_3 \end{bmatrix}$. Then $|\det(A)| = |\det(B)|$

FIGURE 4 Two parallelepipeds of equal volume.

- Base in Span (a_1, a_3) .
- \triangleright $a_2 +$ Span (a_1 , a_3) is a plane parallel Span (a_1 , a_3).
- \triangleright Both parallelepipeds have same base and height, hence same volume.

Vector Space and Subspace

- \triangleright Vector Space is a set V of objects (vectors)
- \triangleright OPERATIONS: addition and scalar multiplication
- Axioms below work for all $u, v \in V$ and all scalars.
	- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V. 2. $u + v = v + u$. 3. $(u + v) + w = u + (v + w)$. 4. There is a zero vector 0 in V such that $u + 0 = u$. 5. For each **u** in V, there is a vector $-u$ in V such that $u + (-u) = 0$. **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V . 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$. 8. $(c + d)$ **u** = c**u** + d**u**. 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$. 10. $1u = u$.

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

Vector Space: Example (I)

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. $u + v = v + u$.
- 3. $(u + v) + w = u + (v + w)$.
- 4. There is a zero vector 0 in V such that $u + 0 = u$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.
- **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V .

7.
$$
c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.
$$

$$
8. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}
$$

$$
9. \, c(d\mathbf{u}) = (cd)\mathbf{u}.
$$

10. $1u = u$.

$$
V=\mathcal{R}^n.
$$

K ロ X K @ X K 경 X X 경 X X 경 Ω 9 / 40

Vector Space: Example (II)

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. $u + v = v + u$.
- 3. $(u + v) + w = u + (v + w)$.
- 4. There is a zero vector 0 in V such that $u + 0 = u$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.
- **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V .

7.
$$
c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}
$$

- 8. $(c + d)$ **u** = c**u** + d**u**.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. $1u = u$.

 $V = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

10 / 40

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Vector Space: Example (II)

1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.

$$
2. u + v = v + u.
$$

- 3. $(u + v) + w = u + (v + w)$.
- 4. There is a zero vector 0 in V such that $u + 0 = u$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.
- **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V .

7.
$$
c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}
$$

- 8. $(c + d)$ **u** = c**u** + d**u**.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. $1u = u$.

 $V = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

• ADDITION: Let $\mathbf{q}(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$.

 $\left(\mathsf{p}+\mathsf{q}\right)(t) \stackrel{{\sf def}}{=} (a_0+b_0) + (a_1+b_1)\; t + (a_2+b_2)\; t^2 + (a_3+b_3)\, t^3 \in \mathcal{P}_3$

 \blacktriangleright SCALAR MULTIPLICATION:

$$
(\alpha \mathbf{p})(t) \stackrel{\text{def}}{=} (\alpha a_0) + (\alpha a_1) t + (\alpha a_2) t^2 + (\alpha a_3) t^3 \in \mathcal{P}_{3} \underbrace{\varepsilon}_{10/40}
$$

Vector Space: Example (III)

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. $u + v = v + u$.
- 3. $(u + v) + w = u + (v + w)$.
- 4. There is a zero vector 0 in V such that $u + 0 = u$.
- 5. For each **u** in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
- **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V .

7.
$$
c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.
$$

$$
8. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.
$$

$$
9. \, c(d\mathbf{u}) = (cd)\mathbf{u}
$$

$$
10. \ \ \mathrm{lu} = \mathrm{u}.
$$

 $C =$ set of all continuous functions:

Sums, scalar multiples of continuous functions are continuous functions.

Vector Space is a set

If needles were vectors, then the cactus would be vector space.

Vectors can point to all possible directions, have all possible sizes.

Subspace H is a Vector Space

イロト イ団 トメ きょ メ きょう E 299 13 / 40

Subspace H is a Vector Space that is subset of a Vector Space V: $H \subseteq V$.

Subspace: Example (I)

 $H = \mathcal{P}_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

Subspace: Example (I)

 $H = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

 $V = P$, set of all polynomials of form:

 ${\mathsf q}\,(t)= a_0 + a_1\,t + a_2\,t^2 + \cdots + a_nt^n,\quad n\ge 0$ is an integer.

Subspace: Example (I)

 $H = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

 $V = P$, set of all polynomials of form:

$$
\mathbf{q}(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n, \quad n \ge 0
$$
 is an integer.

Both H and V are vector spaces, with $H \subset V$. So H is a subspace.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → K Q Q Q 14 / 40

Subspace is Vector Space (I)

Let $H \subseteq V$; Let both H and V be vector spaces.

Subspace is Vector Space (I)

Let $H \subseteq V$; Let both H and V be vector spaces.

- \triangleright addition and scalar multiplication defined on both H and V
- Axioms work for all $\mathbf{u}, \mathbf{v} \in H$ and all scalars.

Subspace is Vector Space (I)

Let $H \subset V$; Let both H and V be vector spaces.

- \triangleright addition and scalar multiplication defined on both H and V
- Axioms work for all $\mathbf{u}, \mathbf{v} \in H$ and all scalars.
	- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
	- 2. $u + v = v + u$.
	- 3. $(u + v) + w = u + (v + w)$.
	- 4. There is a zero vector 0 in V such that $u + 0 = u$.
	- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.

6. The scalar multiple of **u** by c, denoted by c**u**, is in V .

7.
$$
c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.
$$

8. $(c + d)$ **u** = c**u** + d**u**.

$$
9. \ c(d\mathbf{u}) = (cd)\mathbf{u}.
$$

10. $1u = u$.

Axioms 1.) and 6.) need to work for $H|$

Subspace is Vector Space (II)

Let $H \subseteq V$. Let V be vector space. H is a subspace of V if

- \blacktriangleright 0 \in H.
- For any scalar c and any $u \in H$, $\implies c u \in H$.
- For any $\mathbf{u}, \mathbf{v} \in H$, $\implies \mathbf{u} + \mathbf{v} \in H$.

Subspace Example (II): solutions to homogeneous equations

Let $A \in \mathcal{R}^{m \times n}$, and let H be set of all solutions to $A\mathbf{x} = \mathbf{0}$.

Subspace Example (II): solutions to homogeneous equations

Let $A \in \mathcal{R}^{m \times n}$, and let H be set of all solutions to $A\mathbf{x} = \mathbf{0}$.

17 / 40

K ロ > K @ > K 경 > K 경 > 시 경 >

 \blacktriangleright 0 \in H.

- For any scalar c and any $u \in H$, $\implies c u \in H$.
- For any $u, v \in H$, \implies $u + v \in H$.

So H is a subspace of

Subspace Example (II): solutions to homogeneous equations

Let $A \in \mathcal{R}^{m \times n}$, and let H be set of all solutions to $A\mathbf{x} = \mathbf{0}$.

 \blacktriangleright 0 \in H.

- For any scalar c and any $u \in H$, $\implies c u \in H$.
- For any $\mathbf{u}, \mathbf{v} \in H$, $\implies \mathbf{u} + \mathbf{v} \in H$.

So H is a subspace of \mathcal{R}^n

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q → 18 / 40

Let H be set of solutions to differential equation:

$$
y'' + y = 0,
$$

18 / 40

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

where $y = y(t)$ is a function of variable t.

Let H be set of solutions to differential equation:

$$
y'' + y = 0,
$$

where $y = y(t)$ is a function of variable t.

$$
\blacktriangleright \; y(t) \equiv 0 \in H.
$$

- ► For any scalar c and any $y(t) \in H$, \implies c $y(t) \in H$.
- For any $y_1(t)$, $y_2(t) \in H$, $\implies y_1(t) + y_2(t) \in H$.

So H is a subspace of

Let H be set of solutions to differential equation:

$$
y'' + y = 0,
$$

18 / 40

where $y = y(t)$ is a function of variable t.

$$
\blacktriangleright \; y(t) \equiv 0 \in H.
$$

- For any scalar c and any $y(t) \in H$, \implies c $y(t) \in H$.
- For any $y_1(t)$, $y_2(t) \in H$, $\implies y_1(t) + y_2(t) \in H$.

So H is a subspace of C : set of all continuous functions.

Thm: Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ be vectors in Vector Space V. Then **Span** (v_1, \dots, v_p) is a subspace of V.

Thm: Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ be vectors in Vector Space V. Then **Span** (v_1, \dots, v_p) is a subspace of V.

SKETCHY PROOF: Let $u, v \in Span(v_1, \dots, v_p)$. Then \mathbf{u}, \mathbf{v} are linear combinations of $\mathbf{v}_1, \cdots, \mathbf{v}_p$, so are c **u**, **u** + **v**. Hence $c \mathbf{u}, \mathbf{u} + \mathbf{v} \in \text{Span}(\mathbf{v}_1, \cdots, \mathbf{v}_p)$. QED

K ロ X K @ X K 경 X X 경 X X 경 QQ 20 / 40
Subspace Example (IV): solutions to differential equation

Let H be set of solutions to differential equation:

$$
y'' + y = 0, \quad (\ell)
$$

20 / 40

イロト 不優 トメ 君 トメ 君 トー 君

where $y = y(t)$ is a function of variable t.

Subspace Example (IV): solutions to differential equation

Let H be set of solutions to differential equation:

$$
y'' + y = 0, \quad (\ell)
$$

where $y = y(t)$ is a function of variable t.

 \blacktriangleright Two linearly independent solutions to (ℓ) :

$$
y_1(t) = \sin(t), \quad y_2(t) = \cos(t).
$$

 \blacktriangleright Solution subspace

 $H =$ Span (sin (t), cos (t)).

20 / 40

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

§4.2 Null Spaces, Column Spaces

Let
$$
A = [\mathbf{a}_1, \cdots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}
$$
.

 \triangleright The null space of A, denoted Nul A, is set of solutions to $Ax = 0$: Nul $A\stackrel{{\sf def}}{=} \{\mathbf{x}\mid \mathbf{x}\in \mathcal{R}^n \text{ and } A\mathbf{x}=\mathbf{0}\}$.

21 / 40

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) X 9 Q Q

§4.2 Null Spaces, Column Spaces

Let
$$
A = [\mathbf{a}_1, \cdots, \mathbf{a}_n] \in \mathbb{R}^{m \times n}
$$
.

- \triangleright The null space of A, denoted Nul A, is set of solutions to $A\mathbf{x} = \mathbf{0}$ Nul $A\stackrel{{\sf def}}{=} \{\mathbf{x}\mid \mathbf{x}\in \mathcal{R}^n \text{ and } A\mathbf{x}=\mathbf{0}\}$.
- \triangleright The column space of A, denoted Col A, is set of linear combinations of a_1, \dots, a_n :

$$
\mathsf{Col}\,A\stackrel{\mathsf{def}}{=}\mathsf{Span}\left(\mathsf{a}_1,\cdots,\mathsf{a}_n\right).
$$

21 / 40

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) X 9 Q Q

Example: Null Spaces, Column Spaces
Let
$$
A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \in \mathbb{R}^{2 \times 3}
$$
.

Kロメ K個メ K目X K目X / 目 / のRCX 22 / 40

Example: Null Spaces, Column Spaces

\nLet
$$
A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \in \mathbb{R}^{2 \times 3}
$$
.

\nFrom each equation, $A \sim \begin{bmatrix} 1 & -3 & -2 \\ 0 & -6 & -9 \end{bmatrix}$ with free variable x_3 .

\nSolutions to $Ax = 0$: $x = -\frac{x_3}{2} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

\nNull $A = \text{Span}\left(\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}\right) \subset \mathbb{R}^3$.

KO K KØD K ED K ED V E V DA OK 22 / 40

Example: Null Spaces, Column Spaces

\nLet
$$
A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \in \mathbb{R}^{2 \times 3}
$$
.

\nFrom echelon form: $A \sim \begin{bmatrix} 1 & -3 & -2 \\ 0 & -6 & -9 \end{bmatrix}$ with free variable x_3 .

\nSolutions to $Ax = 0$: $x = -\frac{x_3}{2} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

\nNull $A = \text{Span} \begin{pmatrix} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} \end{pmatrix} \subset \mathbb{R}^3$.

\nCol $A = \text{Span} \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \end{pmatrix} \quad (\subset \mathbb{R}^2)$

Kロメ K個メ K目X K目X / 目 / のRCX 22 / 40

Example: Null Spaces, Column Spaces

\nLet
$$
A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} = \begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \in \mathbb{R}^{2 \times 3}
$$
.

\nFor we echelon form: $A \sim \begin{bmatrix} 1 & -3 & -2 \\ 0 & -6 & -9 \end{bmatrix}$ with free variable x_3 .

\nSolutions to $Ax = 0$: $x = -\frac{x_3}{2} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

\nNull $A = \text{Span} \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix} \subset \mathbb{R}^3$.

\nCol $A = \text{Span} \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \cup (\subset \mathbb{R}^2)$

\n $= \text{Span} \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}$.

\nConverges to $Ax = 0$: $x = -\frac{x_3}{2} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

PROOF: Let $A \in \mathcal{R}^{m \times n}$. Want to show Nul A is a subspace.

 \triangleright The zero vector 0 ∈ Nul A: because A 0 = 0.

PROOF: Let $A \in \mathcal{R}^{m \times n}$. Want to show Nul A is a subspace.

- \triangleright The zero vector 0 ∈ Nul A: because A 0 = 0.
- For any scalar c and any $u \in$ Nul A, \Rightarrow A **u** = **0**; A (c **u**) = **0**. So c **u** \in Nul A.

PROOF: Let $A \in \mathcal{R}^{m \times n}$. Want to show Nul A is a subspace.

- \triangleright The zero vector $0 \in$ Nul A: because $A\,0 = 0$.
- For any scalar c and any $\mathbf{u} \in$ Nul A, \implies A **u** = **0**; A (c **u**) = **0**. So c **u** \in Nul A.
- For any $\mathbf{u}, \mathbf{v} \in$ Nul A , $\implies A\mathbf{u} = A\mathbf{v} = \mathbf{0}$; A $(\mathbf{u} + \mathbf{v}) = \mathbf{0}$. So $\mathbf{u} + \mathbf{v} \in \mathbb{N}$ ul A.

23 / 40

イロト 不優 ト 不思 ト 不思 トー 理

Hence Nul A is a subspace of

PROOF: Let $A \in \mathcal{R}^{m \times n}$. Want to show Nul A is a subspace.

- \triangleright The zero vector $0 \in$ Nul A: because $A\,0 = 0$.
- For any scalar c and any $\mathbf{u} \in$ Nul A, \implies A **u** = **0**; A (c **u**) = **0**. So c **u** \in Nul A.
- For any $\mathbf{u}, \mathbf{v} \in$ Nul A , $\implies A\mathbf{u} = A\mathbf{v} = \mathbf{0}$; A $(\mathbf{u} + \mathbf{v}) = \mathbf{0}$. So $\mathbf{u} + \mathbf{v} \in \mathbb{N}$ ul A.

23 / 40

イロト 不優 ト 不思 ト 不思 トー 理

Hence Nul A is a subspace of \mathcal{R}^n .

DEF: A linear transformation T from vector space V into vector W is a rule: $\mathbf{x} \in V \mapsto \mathcal{T}(\mathbf{x}) \in W$, such that

$$
T(u + v) = T(u) + T(v), \text{ for all } u, v \in V
$$

$$
T(cu) = c T(u), \text{ for all } u \text{ and for all scalar } c
$$

24 / 40

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

DEF: A linear transformation T from vector space V into vector W is a rule: $\mathbf{x} \in V \mapsto \mathcal{T}(\mathbf{x}) \in W$, such that

$$
T(u + v) = T(u) + T(v), \text{ for all } u, v \in V
$$

$$
T(cu) = c T(u), \text{ for all } u \text{ and for all scalar } c
$$

EX: Let V be set of all second-order differentiable functions,

$$
T(y) = y'' + y
$$
, where $y = y(t) \in V$.

T is a linear transformation.

Let $T : x \in V \mapsto T(x) \in W$ be a linear transformation.

► The Kernel of T is set of vectors $\mathbf{u} \in V$ so that $T(\mathbf{u}) = \mathbf{0} \subset W$.

25 / 40

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

Let $T : x \in V \mapsto T(x) \in W$ be a linear transformation.

► The Kernel of T is set of vectors $\mathbf{u} \in V$ so that $T(\mathbf{u}) = \mathbf{0} \subset W$.

25 / 40

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

 \triangleright The Range of T is set of vectors $T(u) \subseteq W$.

Let $T : x \in V \mapsto T(x) \in W$ be a linear transformation.

- ► The Kernel of T is set of vectors $\mathbf{u} \in V$ so that $T(\mathbf{u}) = \mathbf{0} \subset W$.
- \triangleright The Range of T is set of vectors $T(u) \subset W$.

FIGURE 2 Subspaces associated with a linear transformation.

§4.3 Linearly independent sets; Bases

Let
$$
S \stackrel{\text{def}}{=} \{v_1, v_2, \cdots, v_p\}
$$
 be a set of vectors in vector space V.

 \triangleright S is linearly dependent if there exists a non-trivial solution to (ℓ) :

$$
{\bf v}_1 c_1 + {\bf v}_2 c_2 + \cdots + {\bf v}_p c_p = {\bf 0}.\qquad(\ell)
$$

§4.3 Linearly independent sets; Bases

- Let $\mathcal{S} \stackrel{\mathit{def}}{=} \{\mathsf{v}_1, \mathsf{v}_2, \cdots, \mathsf{v}_p\}$ be a set of vectors in vector space V .
	- \triangleright S is linearly dependent if there exists a non-trivial solution to (ℓ) :

$$
{\bf v}_1 c_1 + {\bf v}_2 c_2 + \cdots + {\bf v}_p c_p = {\bf 0}.\qquad(\ell)
$$

 \triangleright S is linearly independent if there exists only trivial solution to (ℓ) .

§4.3 Linearly independent sets; Bases

Let
$$
S \stackrel{\text{def}}{=} \{v_1, v_2, \cdots, v_p\}
$$
 be a set of vectors in vector space V.

 \triangleright S is linearly dependent if there exists a non-trivial solution to (ℓ) :

$$
{\bf v}_1 c_1 + {\bf v}_2 c_2 + \cdots + {\bf v}_p c_p = {\bf 0}.\qquad(\ell)
$$

- \triangleright S is linearly independent if there exists only trivial solution to (ℓ) .
- Assume $p > 2$ and $v_1 \neq 0$. S is linearly independent \iff some \mathbf{v}_i (with $j > 1$) is linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{i-1}$.

Linearly independent sets: Examples

The set $\{\sin(x), \cos(x), 1\}$ is linearly independent:

 $\sin(x) c_1 + \cos(x) c_2 + c_3 \equiv 0, \implies c_1 = c_2 = c_3 = 0.$

Linearly independent sets: Examples

The set $\{\sin(x), \cos(x), 1\}$ is linearly independent:

$$
\sin(x) c_1 + \cos(x) c_2 + c_3 \equiv 0,
$$
 $\implies c_1 = c_2 = c_3 = 0.$

27 / 40

K ロ X K 個 X K 重 X K 重 X (重 X) 重 → の

The set $\{\sin^2(x), \cos^2(x), 1\}$ is linearly dependent: $\mathsf{sin}^2(x) + \mathsf{cos}^2(x) + (-1) \cdot 1 \equiv 0.$

Let H be a subspace of vector space V .

Indexed set of vectors $B = {\bf{b}}_1, {\bf{b}}_2, \cdots, {\bf{b}}_p \} \subset V$ is **basis** for H if

 \triangleright vectors in β are linearly independent.

$$
\blacktriangleright H = \text{Span}(\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_p).
$$

Let H be a subspace of vector space V . Indexed set of vectors $B = {\bf{b}}_1, {\bf{b}}_2, \cdots, {\bf{b}}_p \} \subset V$ is **basis** for H if

 \triangleright vectors in β are linearly independent.

$$
\blacktriangleright H = \mathsf{Span}\,(\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_p).
$$

EX: Let
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}
$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$. Then

$$
A \stackrel{\text{def}}{=} [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 5 \end{bmatrix} \stackrel{\text{echelon}}{\implies} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}.
$$

 $A \in \mathbb{R}^{3 \times 3}$ has 3 pivot rows, thus is invertible.

Let H be a subspace of vector space V . Indexed set of vectors $B = {\bf{b}}_1, {\bf{b}}_2, \cdots, {\bf{b}}_p \} \subset V$ is **basis** for H if

vectors in β are linearly independent.

$$
\blacktriangleright H = \text{Span} \, (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_p).
$$

EX: Let
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}
$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$. Then

$$
A \stackrel{def}{=} [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 5 \end{bmatrix} \stackrel{echelon}{=} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}.
$$

- $A \in \mathbb{R}^{3 \times 3}$ has 3 pivot rows, thus is invertible.
- \blacktriangleright Column vectors $\mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3$ linearly independent and span \mathcal{R}^3 .

Let H be a subspace of vector space V . Indexed set of vectors $B = {\bf{b}}_1, {\bf{b}}_2, \cdots, {\bf{b}}_p \} \subset V$ is **basis** for H if

rectors in β are linearly independent.

$$
\blacktriangleright \; H = \text{Span} \, (\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_p).
$$

EX: Let
$$
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}
$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$. Then

$$
A \stackrel{def}{=} [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 5 \end{bmatrix} \stackrel{echelon}{=} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}.
$$

- $A \in \mathbb{R}^{3 \times 3}$ has 3 pivot rows, thus is invertible.
- \blacktriangleright Column vectors $\mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3$ linearly independent and span \mathcal{R}^3 .
- Therefore must be basis for \mathcal{R}^3 .

When vectors seem to span brain

"Mr. Osborne, may I be excused? My brain is full."

When vectors seem to span brain

But they don't

SOLUTION: Obviously **Span** (v_1, v_2) \subseteq *H*. So we only need to show $H \subseteq \text{Span}(v_1, v_2)$.

Note
$$
[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 3 \end{bmatrix} \stackrel{\text{echelon}}{\implies} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$
.

Only 2 pivots, with 3^{rd} column non-pivot column: $v_3 = 2v_1 + v_2$.

SOLUTION: Obviously **Span** (v_1, v_2) \subseteq *H*. So we only need to show $H \subseteq \text{Span}(v_1, v_2)$.

Note
$$
[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 3 \end{bmatrix} \stackrel{\text{echelon}}{\implies} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$
.

Only 2 pivots, with 3^{rd} column non-pivot column: $v_3 = 2v_1 + v_2$. Any vector $x \in Span(v_1, v_2, v_3)$ is a linear combination of v_1, v_2, v_3

SOLUTION: Obviously **Span** (v_1, v_2) \subseteq *H*. So we only need to show $H \subseteq \text{Span}(v_1, v_2)$.

Note
$$
[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ -2 & 7 & 3 \end{bmatrix} \stackrel{\text{echelon}}{\implies} \begin{bmatrix} 1 & -4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$
.

Only 2 pivots, with 3^{rd} column non-pivot column: $v_3 = 2v_1 + v_2$. Any vector $x \in Span(v_1, v_2, v_3)$ is a linear combination of v_1, v_2, v_3

$$
\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \n= c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (2 \mathbf{v}_1 + \mathbf{v}_2) \n= (c_1 + 2 c_3) \mathbf{v}_1 + (c_2 + c_3) \mathbf{v}_2 \in \text{Span} (\mathbf{v}_1, \mathbf{v}_2) \quad \text{QED}
$$

30 / 40

Spanning Set Theorem (II)

Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H .

Spanning Set Theorem (II) Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H. (2) If $H \neq \{0\}$, then some subset of S is a basis for H.

Spanning Set Theorem (II) Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H. (2) If $H \neq \{0\}$, then some subset of S is a basis for H. PROOF OF (1) : Given any vector x, it must be a linear combination of vectors in S_i

$$
\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p, \qquad (\ell).
$$

Spanning Set Theorem (II) Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H. (2) If $H \neq \{0\}$, then some subset of S is a basis for H. PROOF OF (1) : Given any vector x, it must be a linear combination of vectors in S_i

$$
\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p, \qquad (\ell).
$$

Just need to show x is a linear combination of vectors in $\widehat{\mathcal{S}}$. Indeed

since
$$
\mathbf{v}_k = a_1 \mathbf{v}_1 + \cdots + a_{k-1} \mathbf{v}_{k-1} + a_{k+1} \mathbf{v}_{k+1} + \cdots + a_p \mathbf{v}_p
$$
, (ℓ) becomes

$$
\mathbf{x} = (c_1 + c_k a_1) \mathbf{v}_1 + \cdots + (c_{k-1} + c_k a_{k-1}) \mathbf{v}_{k-1} + (c_{k+1} + c_k a_{k+1}) \mathbf{v}_{k+1} + \cdots + (c_p + c_k a_p) \mathbf{v}_p.
$$
Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H .

(2) If $H \neq \{0\}$, then some subset of S is a basis for H.

Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H . (2) If $H \neq \{0\}$, then some subset of S is a basis for H. PROOF OF (2) :

(a) If vectors in S are linearly independent, then S already basis for H.

Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H . (2) If $H \neq \{0\}$, then some subset of S is a basis for H. PROOF OF (2) :

- (a) If vectors in S are linearly independent, then S already basis for H.
- (b) Otherwise delete a dependent vector from S to get a reduced spanning set.

Let $S = {\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p$ \subset vector space V, $H = \text{Span} ({\bf v}_1, {\bf v}_2, \cdots, {\bf v}_p)$.

(1) If for some $1 \leq k \leq p$, vector \mathbf{v}_k is a linear combination of remaining vectors in $\widehat{\mathcal{S}} \stackrel{def}{=} \mathcal{S} \setminus \{\mathsf{v}_k\}$, then $\widehat{\mathcal{S}}$ still spans H . (2) If $H \neq \{0\}$, then some subset of S is a basis for H. PROOF OF (2) :

- (a) If vectors in S are linearly independent, then S already basis for H.
- (b) Otherwise delete a dependent vector from S to get a reduced spanning set.
- (c) Since $H \neq \{0\}$, repeat steps (a-b) to continue reducing spanning set until it is linearly independent and hence a basis. QED

Let
$$
A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}
$$
.

Let
$$
A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}
$$
.
\n
$$
\bullet \text{ Compute } A \overset{\text{echelon}}{\implies} \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^ 33 / 40

Let
$$
A = [a_1 \ a_2 \ a_3 \ a_4 \ a_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}
$$
.
\n
$$
\bullet \text{ Compute } A \overset{echelon}{\implies} \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
\bullet \text{ pivot columns are columns } 1, 3, 5: \text{ Col } A = \text{Span } (a_1, a_3, a_5).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 33 / 40

 x

Let
$$
A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}
$$
.
\n
$$
\bullet \text{ Compute } A \stackrel{echelon}{\implies} \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$
\n
$$
\bullet \text{ pivot columns are columns } 1, 3, 5: \text{ Col } A = \text{Span }(\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5).
$$
\n
$$
\bullet \text{ Free columns are columns } 2, 4: \text{ Letting } A\mathbf{x} = \mathbf{0} \text{ gives}
$$
\n
$$
\begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.
$$
\n
$$
\Rightarrow \text{Null } A = \text{Span } \begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.
$$

33 / 40

 \setminus

 $\Bigg\}$

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each **x** in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$
\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}
$$

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each **x** in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$
\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}
$$

34 / 40

イロト 不優 ト 不思 ト 不思 トー 理

PROOF: Since β spans V, we write x as a linear combination

$$
\mathbf{x} = d_1 \, \mathbf{b}_1 + \cdots + d_n \, \mathbf{b}_n, \quad (2)
$$

for scalars d_1, \dots, d_n . To show uniqueness, we now show equations (1) and (2) are same. Indeed,

$$
\mathbf{0}=\mathbf{x}-\mathbf{x}=(d_1-c_1)\mathbf{b}_1+\cdots+(d_n-c_n)\mathbf{b}_n.
$$

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each **x** in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$
\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}
$$

PROOF: Since β spans V, we write **x** as a linear combination

$$
\mathbf{x} = d_1 \, \mathbf{b}_1 + \cdots + d_n \, \mathbf{b}_n, \quad (2)
$$

for scalars d_1, \dots, d_n . To show uniqueness, we now show equations (1) and (2) are same. Indeed,

$$
\mathbf{0}=\mathbf{x}-\mathbf{x}=(d_1-c_1)\mathbf{b}_1+\cdots+(d_n-c_n)\mathbf{b}_n.
$$

Since β is a basis, vectors $\mathbf{b}_1, \cdots, \mathbf{b}_n$ must be linearly independent. Hence

$$
d_1 - c_1 = \cdots = d_n - c_n = 0. \bigoplus_{\alpha \text{ times } \alpha \text{ times } \beta \text{ times } \alpha \text{ times } \beta \text{
$$

Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and x is in V. The coordinates of **x** relative to the basis B (or the B-coordinates of x) are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

Coordinate vector of x is

$$
\left[\mathbf{x}\right]_{\mathcal{B}} \stackrel{\text{def}}{=} \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right].
$$

イロト 不優 ト 不思 ト 不思 トー 理

35 / 40

Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and x is in V. The coordinates of **x** relative to the basis B (or the B-coordinates of x) are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

Coordinate vector of x is
$$
[\mathbf{x}]_B \stackrel{\text{def}}{=} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
.
\nEXAMPLE: Let basis $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ for $\mathcal{R}^{2 \times 2}$ with
\n
$$
\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.
$$
 Find $[\mathbf{x}]_B$ for vector $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$

K ロンス 御 > スミンス ミンニミ 35 / 40

Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and x is in V. The coordinates of **x** relative to the basis B (or the B-coordinates of x) are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

Coordinate vector of x is
$$
[\mathbf{x}]_B \stackrel{\text{def}}{=} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
.
\nEXAMPLE: Let basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ for $\mathcal{R}^{2 \times 2}$ with
\n $\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Find $[\mathbf{x}]_B$ for vector $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.
\nSLN: Let $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2$,

35 / 40

K ロンス 御 > スミンス ミンニミ

Suppose $\mathcal{B} = \{b_1, \ldots, b_n\}$ is a basis for V and x is in V. The coordinates of **x** relative to the basis B (or the B-coordinates of x) are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

Coordinate vector of x is
$$
\begin{bmatrix} x \end{bmatrix}_{B} \stackrel{def}{=} \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix}.
$$

\nEXAMPLE: Let basis $B = \{b_{1}, b_{2}\}$ for $\mathcal{R}^{2 \times 2}$ with
\n
$$
\mathbf{b}_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b}_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}. \text{ Find } [\mathbf{x}]_{B} \text{ for vector } \mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.
$$

\nSLN: Let $\mathbf{x} = c_{1} \mathbf{b}_{1} + c_{2} \mathbf{b}_{2},$
\nIn matrix form $\begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}.$
\nTherefore $[\mathbf{x}]_{B} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$

§4.4 Coordinate Systems (III) EXAMPLE: Let basis $\mathcal{B} = \{b_1, b_2\}$ with $\mathbf{b}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$ 1 $\Big] \ , \ \mathbf{b}_2 = \Big[\begin{array}{c} -1 \\ 1 \end{array} \Big]$ 1 . For vector $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ 5 1 $[\mathbf{x}]_\mathcal{B} = \left[\begin{array}{c} 3 \\ 2 \end{array}\right]$ 2 .

§4.4 Coordinate Systems (III) EXAMPLE: Let basis $\mathcal{B} = \{b_1, b_2\}$ with $\mathbf{b}_1 = \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$ $\Big] \ , \ \mathbf{b}_2 = \Big[\begin{array}{c} -1 \\ 1 \end{array} \Big]$. For vector $\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ 1 1 1 5 $[\mathbf{x}]_\mathcal{B} = \left[\begin{array}{c} 3 \\ 2 \end{array}\right]$. 2 x \mathbf{b}_2 \mathbf{b}_1 **FIGURE 4**

The B -coordinate vector of **x** is $(3, 2).$

 $\leftarrow \equiv +$ 36 / 40

Let indexed set $\mathcal{B} = \{\mathbf{b}_1, \cdots, \mathbf{b}_n\}$ be basis for \mathcal{R}^n , and let $\mathbf{x} \in \mathcal{R}^n$. The vector equation

$$
\mathbf{x} = c_1 \, \mathbf{b}_1 + \cdots + c_n \, \mathbf{b}_n
$$

is equivalent to

$$
\mathbf{x} = P_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}, \quad \text{where} \quad P_{\mathcal{B}} \stackrel{\text{def}}{=} [\mathbf{b}_1, \cdots, \mathbf{b}_n].
$$

 P_B is change-of-coordinates matrix

Let indexed set $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_n}$ be basis for vector space V, and let $\mathsf{x} \in V$. The mapping $\mathsf{x} \mapsto [\mathsf{x}]_{\mathcal{B}}$ connects V to \mathcal{R}^n .

Let indexed set $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_n}$ be basis for vector space V, and let $\mathsf{x} \in V$. The mapping $\mathsf{x} \mapsto [\mathsf{x}]_{\mathcal{B}}$ connects V to \mathcal{R}^n .

FIGURE 5 The coordinate mapping from V onto \mathbb{R}^n .

38 / 40

メロメ メ御き メミメ メミメ

Example: $\mathbf{x} \mapsto [\mathbf{x}]_B$ Let $V = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

Let indexed set $\mathcal{B}=\left\{ 1,t,t^{2},t^{3}\right\}$ be basis for $\mathcal{P}_{3}.$ Then

$$
[\mathbf{p}]_{\mathcal{B}} = \left[\begin{array}{c}a_0\\a_1\\a_2\\a_3\end{array}\right] \in \mathcal{R}^4.
$$

39 / 40

イロト 不優 ト 不重 ト 不重 トー 重

Example: $\mathbf{x} \mapsto [\mathbf{x}]_B$ Let $V = P_3$, set of all polynomials of degree at most 3, of form:

$$
\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
$$

Let indexed set $\mathcal{B}=\left\{ 1,t,t^{2},t^{3}\right\}$ be basis for $\mathcal{P}_{3}.$ Then

$$
[\mathbf{p}]_{\mathcal{B}} = \left[\begin{array}{c}a_0\\a_1\\a_2\\a_3\end{array}\right] \in \mathcal{R}^4.
$$

Let $B = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Let $B = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_R$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

PROOF: Take any two vectors $u, v \in V$. Then

 $\mathbf{u} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$, $\mathbf{v} = d_1 \mathbf{b}_1 + \cdots + d_n \mathbf{b}_n$,

so that
$$
[\mathbf{u}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
, $[\mathbf{v}]_B = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}$.
\nSince $\mathbf{u} + \mathbf{v} = (c_1 + d_1) \mathbf{b}_1 + \dots + (c_n + d_n) \mathbf{b}_n$,
\nIt follows $[\mathbf{u} + \mathbf{v}]_B = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\mathbf{u}]_B + [\mathbf{v}]_B$

K ロ X K @ X K 할 X K 할 X - 할 X Y Q Q @ 40 / 40

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_n$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

PROOF: Take any two vectors $u, v \in V$. Then

 $\mathbf{u} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$, $\mathbf{v} = d_1 \mathbf{b}_1 + \cdots + d_n \mathbf{b}_n$,

so that
$$
[\mathbf{u}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
, $[\mathbf{v}]_B = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}$.
\nSince $\mathbf{u} + \mathbf{v} = (c_1 + d_1) \mathbf{b}_1 + \dots + (c_n + d_n) \mathbf{b}_n$,
\nIt follows $[\mathbf{u} + \mathbf{v}]_B = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\mathbf{u}]_B + [\mathbf{v}]_B$

Similarly (book) $\left[\gamma\,\mathbf{u}\right]_{\mathcal{B}} = \gamma\,\left[\mathbf{u}\right]_{\mathcal{B}}$ for <u>any</u> scalar γ .

40 / 40

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_n$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

PROOF: Take any two vectors $u, v \in V$. Then

 $\mathbf{u} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$, $\mathbf{v} = d_1 \mathbf{b}_1 + \cdots + d_n \mathbf{b}_n$,

so that
$$
[\mathbf{u}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$
, $[\mathbf{v}]_B = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}$.
\nSince $\mathbf{u} + \mathbf{v} = (c_1 + d_1) \mathbf{b}_1 + \dots + (c_n + d_n) \mathbf{b}_n$,
\nIt follows $[\mathbf{u} + \mathbf{v}]_B = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = [\mathbf{u}]_B + [\mathbf{v}]_B$

Similarly (book) $[\gamma \mathbf{u}]_B = \gamma [\mathbf{u}]_B$ $\frac{1}{\sqrt{2}}$ for any scalar γ . Exercises $23/24$ for one-to-one proof.