Matrix Transpose

Transpose of matrix A is denoted AT, and formed by setting each
column in AT from corresponding row in A.
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Matrix Transpose

Transpose of matrix A is denoted AT, and formed by setting each

column in AT from corresponding row in A.

1 4 2
a1 4] o] 2

ThenAT:[i ﬂ BT =

~10 |

2
2
1

2 1]

—1
-1
0

.
Theorem: (AT) — A  (AB)T =BT AT



§2.2 Inverse of Matrix (1)

2 x 2 system of equations Ax = b: [ i

In scalar form: ax; +bx, =

cxy+dxp =

50



§2.2 Inverse of Matrix (1)
. a b X1
2 x 2 system of equations Ax = b: c =

In scalar form: ax3 +bxx = 1, (41)
cx1+dx = [b. (62)

> d X (61)—b>< (fz)i(&d—cb)xlzdﬂl—bﬂz.
» ax (lp)—cx(l1)= (ad—cb)xp =afr—cpi.
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§2.2 Inverse of Matrix (1)

2 x 2 system of equations Ax = b: [Z’ b] [X1:|:|:,81:|.

In scalar form: ax3 +bxx = 1, (41)
cx1+dx = [b. (62)

> d X (61)—b>< (fz)i(&d—cb)xlzdﬂl—bﬂz.
» ax (lp)—cx(l1)= (ad—cb)xp =afr—cpi.
Assume ad — cb # 0.

. 1 dﬂl—bﬁﬂ_ 1 [ d _b:||:/81:|
 ad—cb | afr—cB1 | ad—ch| —c a B




§2.2 Inverse of Matrix (1)
. a b X1
2 x 2 system of equations Ax = b: c =

In scalar form: ax3 +bxx = 1, (41)
cx1+dx = [b. (62)

> d><(61)—b><(fg)i(&d—cb)xlzdﬂl—bﬁz.

» ax (lp)—cx(l1)= (ad—cb)xp =afr—cpi.
Assume ad — cb # 0.

1 dp1— bpo 1 d —b
ad—cb | apr—cp —c a

1 d —b def ,_1
= | — b= A"b.
(ad—cb[—c a])

X =

I

1
B2

|
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§2.2 Inverse of Matrix (1)
. a b X1
2 x 2 system of equations Ax = b: c =

In scalar form: ax3 +bxx = 1, (41)
cx1+dx = [b. (62)

>d><(51)—b><(fg)i(&d—cb)xlzdﬂl—bﬁz.
» ax (lp)—cx(l1)= (ad—cb)xp =afr—cpi.
Assume ad — cb # 0.

1 dfr—bp | 1 d —b
ad—cbhb | aBfp—cB1 | ad—cb| —c a

1 d —b def ,_1
= | — b= A"b.
(ad—cb[—c a])

Determinant: det (A) = ad — cb. So A™1 exists
<= det(A) #0.

X

I

1
B2

|

N

50



Inverse of Matrix (I)

) | a b 1 1 d —b
2><2matrlx A—|:C d:|7 A _ad_cb|:—c a:|.
1 0 . . .
Let | = [ 01 ] be the identity matrix. Then

Al=1A=A, Ix=x forall Aand x.

1 d —b a b
14 _ a1
A A_(ad—cb[—c a})[c d} [=AAT
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Inverse of Matrix (I)

) | a b 1 1 d —b
2><2matrlx A—|:C d:|7 A —ad—cb|:_c a:|.
1 0 . . .
Let | = [ 0 1 ] be the identity matrix. Then

Al=1A=A, Ix=x forall Aand x.

1 d —b a b
14 _ a1
A A_(ad—cb[—c a})[c d} [=AAT

Definition: Matrix A € R™" is invertible if there exists matrix

1 0 --- O

01 --- 0
CeR™"sothat CA=1=AC, with I=| . . identity.

o0 --- 1

C is called inverse of A, denoted as A~1.



Inverse of Matrix (II)

3 2

EX: Let A:[l 4

[3 2}x:[_1} has solution x:A_l[

1 4 2

], then A~!=

1

10

|

50



Inverse of Matrix (II)

_ 3 2 a1
EX: Let A_[l 4], then A _10[_1 3

3 2 _ 1 ) a1 1] 1 8
[1 4:|X—|:_2:| has solution x=A [_2]—10[_7].

0 1 2 1 -9 14 -3
EX: A=| 1 0 3|, then (later show) A7l = S|4 8 2
4 -3 8 3 —4 1

1 1 -13

Ax=| -1 has solution x=A"1| -1 | = -7



Inverse Matrix (I11)

Theorem: Let A, B € R™*" be invertible
> (A_l)_l e A

50



Inverse Matrix (I11)

Theorem: Let A, B € R™*" be invertible
> (A=A
> (AT) = (AT

50



Inverse Matrix (I11)

Theorem: Let A, B € R™*" be invertible
> (A=A
» (AT) = (AT
» (AB) t=B"1A"1

PROOF:

5/50



Elementary Operation = Elementary Matrix (£ 3)

d11 412 413
Let A= ar1 azp a3
d31 432 as3
interchange
> row; rows
a31 432 ass
A = a1 axn ax
d11 412 413
def
= Eg3A

di1 412 413
a1 ax» a
a31 432 433

= O O
o = O
O O =



Elementary Operation = Elementary Matrix (£ 3)

dil d12 ai3

Let A= ar1 azp a3
a3l d32 ass
interchange

> row; <—_ rows

a1 as as3 0 01 a1 ar a3
A = a1 ap ax3 | =010 apl axpn ax
a1 ar a3 100 a1 as ass
def
= E3A

. interchange
» FEq 3 obtained by row; PR rows on /.

6

50



Elementary Operation = Elementary Matrix (E)

a1 a12
Let A= a1 an
as31 as2

ais
azs
ass

> rows — 2row; — rows

an
ani
a1 —2an

a2
azo
az —2ar
a1l a2
a1 a
as1  asz

~

a3
a3
asz — 2ai3
a3
def =~
dan3 = E2 A

50



~

Elementary Operation = Elementary Matrix (E)

411 d12 413
Let A= as1 az ass
a31 4d32 4as3

> rows — 2row; — rows

ail a1z a13
A = a1 a2 a3
| 831 —2a11 a3 —2ap2 az —2ai3
i 1 00 d11 di12 ai3
= 010 do1 a2 azs déf E2 A
L -2 0 1 d31 432 as3

> Eg obtained by rows; — 2row; = rows on /.



Elementary Operation = Elementary Matrix

> Every elementary operation on A = E A, where E is result
of same EO on identity.

50



Elementary Operation = Elementary Matrix

> Every elementary operation on A = E A, where E is result
of same EO on identity.

» Each elementary matrix E is invertible. E~1 is elementary
matrix that transforms E to identity.

50



Reverse Elementary Operation

di1 412 4ai3

Let A= ds1 az ass
a31 d32 a33
interchange

> row; <~ rows

A = E1,3A:

= O O

o = O

o O

50



Reverse Elementary Operation

di1 412 4ai3
Let A= ds1 az ass
d31 432 433

interchange
> row; <~ rows

A = E1,3A:

= O O

o = O

O O =
>

~1
» E 3 =Ei3.

Inverse of (row interchange) = (same interchange).



Reverse Elementary Operation

> rows — 2row; = rows

A — EBA=

N O
O~ O

10/50



Reverse Elementary Operation

> rows — 2row; = rows

A — EBA=

N O
O = O

100
»E'=010
2 01

Inverse of (rows — 2 row; = rows) is (rows + 2 row; = rows)

10/50



Invertible Matrices

Let A€ R™" be invertible (A~! exists). Then in Ax=b:

x=Ix=(ATA) x=A"(Ax)=A"1h.

11 /50



Invertible Matrices

Let A€ R™" be invertible (A~! exists). Then in Ax=b:

x=Ix=(ATA) x=A"(Ax)=A"1h.

» If we know A™1, computing x is easy.

11 /50



Invertible Matrices

Let A€ R™" be invertible (A~! exists). Then in Ax=b:

x=Ix=(ATA) x=A"(Ax)=A"1h.

» If we know A™1, computing x is easy.

» Otherwise, can we compute A~1?
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Invertible Matrices

Let A€ R™" be invertible (A~! exists). Then in Ax=b:

x=Ix=(ATA) x=A"(Ax)=A"1h.

» If we know A™1, computing x is easy.

» Otherwise, can we compute A~1? (YES, but expensive.)

11 /50



Theorem: A € R"*" |Invertible <= A row reducible to /

PROOF: Let A invertible ( == A row reducible to /)

» Equation Ax = b has a solution for EACH b
» A has pivot in every row

» A has no free variables (A square matrix)
> A reducible to /.

12/50



Theorem: A € R"*" |Invertible <= A row reducible to /

PROOF: Let A row reducible to / ( = A invertible)

> Let A be reduced to / by elementary matrices Eq,--- , Ep
Ep (Epr (- (E1 A))) = 1.
whichis  (EpEp—1---E1) A=1.
» Therefore
At = (EpEpr - E1) = Ep (Epor (-~ (B 1))

» As you reduce A to | with elementary operations, you turn /
to A7L.

13 /50



Computing A~! vs. Solving Ax =b

» Computing A~%:

Ep(Ep1 (- (EL (A D)) =( AY).

14 /50



Computing A~! vs. Solving Ax =b

» Computing A~%:

Ep(Ep1 (- (EL (A D)) =( AY).

» Solving Ax = b:

Ey(Epa (- (Ei (A B)=(I A 'b).

14 /50



Computing A~! vs. Solving Ax =b

» Computing A~%:

» Solving Ax = b:

Ey(Epa (- (Ei (A B)=(I A 'b).

In practice, only row echelon form needed for A= b and A1 ‘

14 /50



Computing A~! as Solving AX = |

> Let A€ R™" be invertible,
» | =(e1,e2,- - ,€,) be the identity matrix,
where e; is 1 at jth component and 0 elsewhere, 1 < j < n.

> A_l :X: (X]_,X2,"‘ 7xn)

Then A (X]_,XQ,"' 7Xn):(el7e27"' :en)7

50



Computing A~! as Solving AX = |
> Let A€ R™" be invertible,
» | =(e1,e2,- - ,€,) be the identity matrix,
where e; is 1 at jth component and 0 elsewhere, 1 < j < n.
> A_]- :X = (x1’X27... 7xn)

Then A (X17X2,"' 7Xn):(el7e27"' :en)7

or Axj=e;, j=1,--n

Ep(Ep-1(--(EL (A (er,e2,--,en)))))=(/ (A ler,Aler, -+, Ale,)).
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Computing A~! as Solving AX = |
> Let A€ R™" be invertible,
» | =(e1,e2,- - ,€,) be the identity matrix,
where e; is 1 at jth component and 0 elsewhere, 1 < j < n.
> A_]- :X = (xlax27”‘ ’Xn)

Then A (X17X2,"' 7Xn):(el7e27"' 7en)7

or Axj=e;, j=1,--n

Ep(Ep-1(--(EL (A (er,e2,--,en)))))=(/ (A ler,Aler, -+, Ale,)).

More computations to compute A~! than to solve Ax = b

15/50



§2.3 Characterizations of Invertible Matrices

Let A € R"™" be square matrix. Statements below are equivalent.
a. Ais invertible.
d. The equation Ax = 0 has only trivial solution.
j- There is a matrix C € R"*" so that CA = 1.

16 /50



§2.3 Characterizations of Invertible Matrices

Let A € R"™" be square matrix. Statements below are equivalent.

a. Ais invertible.

d. The equation Ax = 0 has only trivial solution.

j- There is a matrix C € R"*" so that CA = 1.
PROOF APPROACH: a. = j. = d. = a.

16 /50



§2.3 Characterizations of Invertible Matrices

Let A € R™" be square matrix. Statements below are equivalent.

a. Ais invertible.
d. The equation Ax = 0 has only trivial solution.
j- There is a matrix C € R"*" so that CA = 1.

PROOF OF a. = j.:
If Ais invertible, then C = A~! works for j.

17 /50



§2.3 Characterizations of Invertible Matrices

Let A € R™" be square matrix. Statements below are equivalent.

a. Ais invertible.
d. The equation Ax = 0 has only trivial solution.
j- There is a matrix C € R"™ " so that CA= 1.

PROOF OF j. = d.:
Let Ax = 0. Then x must be 0 because

x=Ix=(CA)x=C (Ax)=C0=0.

18 /50



§2.3 Characterizations of Invertible Matrices

Let A € R™" be square matrix. Statements below are equivalent.
a. Ais invertible.
d. The equation Ax = 0 has only trivial solution.
j- There is a matrix C € R"™" so that CA= 1.

19 /50



§2.3 Characterizations of Invertible Matrices

Let A € R™" be square matrix. Statements below are equivalent.

a. Ais invertible.
d. The equation Ax = 0 has only trivial solution.
j- There is a matrix C € R"™" so that CA= 1.

PrROOF OF d. = a.:
Follows from Theorems 11, 12 in §1.9:

> Columns of A must be linearly independent. Therefore

> there must be a pivot in each row. QED

19 /50



§2.3 Inverse Linear Transformation (I)

Let A € R™" be an invertible matrix. Then

AL (Ax)=x, A(A'x)=x forall x

Multiplication

/ by A \\
o

™~ Multiplication -
— -

xe e AX

_—

by A™!

FIGURE 2 A~! transforms Ax back to x.

DEFINITION: A linear transformation T: R" — R" is
invertible if there exists function S: R" — R" so that

S(T(x))=x, T(S5(x))=x forall xeR"

20 /50



§2.3 Inverse Linear Transformation (II)

Let A be standard matrix for linear transformation 7 : R" — R"™:
T (x)=Ax forall xeR"

Theorem: T is invertible <= A is invertible.

21 /50



63.1 Introduction to Determinants (1)

For 2 x 2 system of equations Ax = b: [ 1 A1 ] [ X } = { A ]
a1 ax X2 B2

In scalar form: a;1x1 +apx = pi, (51)

a1x1+anx = P2 (l)

22 /50



63.1 Introduction to Determinants (1)

For 2 x 2 system of equations Ax = b: [ 1 A1 ] [ X } = { A ]
a1 ax X2 B2

In scalar form: a;1x1 +apx = pi, (51)

a1x1+anx = P2 (l)

> axp X (£1) — a12 X (f2) = (a11 822 — a2 a21) x1 = 0.

» Similar formula for x».
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63.1 Introduction to Determinants (1)

For 2 x 2 system of equations Ax = b: [ 1 A1 ] [ X } = { A ]
a1 ax X2 B2

In scalar form: a;1x1 +apx = pi, (51)

a1x1+anx = P2 (l)

> axp X (£1) — a12 X (f2) = (a11 822 — a2 a21) x1 = 0.
» Similar formula for x».

def def

. a a
Determinant of A: det (A) = a11dy — aijpay = 11 12

a1 a2




63.1 Introduction to Determinants (1)

For 2 x 2 system of equations Ax = b: [ 1 A1 ] [ X } = { A ]
a1 ax X2 B2

In scalar form: a;1x1 +apx = pi, (51)

a1x1+anx = P2 (l)

> axp X (£1) — a12 X (f2) = (a11 822 — a2 a21) x1 = 0.
» Similar formula for x».

def

. def a a
Determinant of A: det (A) = a1l app — aip a1 = 11 12

a1 a2

‘Solution exists <= det (A) # 0.‘




Introduction to Determinants (I1): 3 x 3 equations Ax =b

aixi+apx+azxs = fi, (6)
a1x1+apxo+tasxs = [ (L2)
as1xi+apxe+asxz = [Pa. (l2)

23 /50



Introduction to Determinants (I1): 3 x 3 equations Ax =b

aixi+apx+azxs = fi, (6)
a1x1+apxo+tasxs = [ (L2)
a1x1+apxo+axxs = [ (f2)
ax a3 ap a3 ap a3
x (1) — x (€2) + x (¢
‘ d32 433 (6a) a32 (&2) 22 a3 (&)

23 /50



Introduction to Determinants (I1): 3 x 3 equations Ax =b

ai1 x1 + a2 x2 + a13 X3 B1,  (41)
a1x1+apxo+tasxs = [ (L2)
a1x1+apxo+axxs = [ (f2)
a a a a a a
22 23 > (El) o 12 13 > (£2) + 12 13
d32 ds3 ds2 dz2 az3
az2 aza di2 a3 d12 ai3
a1 —an + a31 X1
azy ass asy ass a» azs
4 (ap ax»p a3 | 2 aix a3 ¥ as a2 a3 %
a32 ass 432 as3 az azs

23 /50



Introduction to Determinants (I1): 3 x 3 equations Ax =b

ainxi+anx+azxs = P, (1)
a1x1+apxo+tasxs = [ (L2)
a1x1+apxo+axxs = [ (f2)
a a a a a a
22 23 > (El) o 12 13 > (£2) + 12 13 > (63)
d32 ds3 ds2 dz2 az3

az2 aza di2 a3 d12 ai3

a1 —an + a31 X1
azy ass asy ass a» azs

+ (ap axp ax; | 2 a2 a3 ¥ am a2 a3 %
a32 ass 432 as3 az azs

+0 X3 = 0. (f4)

Coefficients for xz, x3 in (¢4) = 0. det (A) %f coefficient for xq.
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Introduction to Determinants (I1): 3 x 3 equations Ax =b

ainxi+anx+azxs = P, (1)
a1x1+apxo+tasxs = [ (L2)
a1x1+apxo+axxs = [ (f2)
a a a a a a
22 23 > (E]_) o 12 13 > (£2) + 12 13 > (63)
d32 ds3 ds2 dz2 az3

az2 aza di2 a3 d12 ai3

a1 —an + a31 X1
azy ass asy ass a» azs

+ (ap axp ax; | 2 a2 a3 ¥ am a2 a3 %
a32 ass 432 as3 az azs

+0 X3 = 0. (f4)

Coefficients for xz, x3 in (¢4) = 0. det (A) %f coefficient for xq.

‘Solution exists <= det (A) # 0.‘
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di1 412 4d13
det(A) = | a1 axp a3

a3l d32 4ass
di2 413
a2 a3

12 413
d32 433

a2 a3

+ a3
asy ass

24 /50



= a1l

a1l

= | a2

a31

= a1l

a2
a
a32

an2
as2

a23
a33

ai3
a3
as33

as2

‘_321

o o o

g
g

an
as2

a3 | — a2
a33

a1z a12
+ as1

ass a2

O app a3

O 0O 0O|+as

0 a3 ass

ai3
a3

O an
O ax
0o d

a13
az3

24 /50



Example

1 5 0
det(A) = |2 4 -1
0 -2 0

4 -1 50 5 0

BN E IR

25 /50



Determinant for A € R"™*"

di1 a2 - din
a1 a2 -+ ap
det (A) =

dnl an2 - dnn
o o - O

O ax -+ a2

= da11

O ap -+ anm
O ai2
O ano

+ (_1)n+1 dnl

OJ ai?
O O
O an2

din

azn

U

ain

ann

26 /50



Determinant for A € R"™*"

di1 a2 - din
dz1 a2 -+ ap
det(A) =

dnl an2 - dnn
| 0 ... ]
O ax»n -+ ap

= an

] an2 dnn
O ai2

O ax
+ (_1)n—|—1 dnl .

o o

OJ di2
O O
—az
O an2
din
a2n
U

’det (A) can be expanded along any row or column.

ain

ann

26
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0
-1
1

det (A)

Example

5
0 2 4
0

-1

2 4

27 /50



Upper Triangular Matrix

Let A=

triangular.

ai1 412
0 dano
0 0

det (A)

ai3
a3
as33

a3n | € R™" be upper

dln
azn
ann
d11 412 413
0 ax ax
0 0 das33
0 0 0
a2 a3
0 ass
al -
0 0

d11 - a22 - ann

dln
azn
a3n

ann

a2n
asn

ann

28 /50



§3.2 Properties of Determinants

Let A be a square matrix.
» If a multiple of one row of A is added to another row (ROW
REPLACEMENT) to get matrix B, then det (B) = det (A).
» If two rows of A are interchanged to (ROW INTERCHANGE)
get B, then det (B) = —det (A).
> If one row of A is multiplied by k to get B, then
det (B) = k - det (A).

29 /50



§3.2 Properties of Determinants

Let A be a square matrix.

» If a multiple of one row of A is added to another row (ROW
REPLACEMENT) to get matrix B, then det (B) = det (A).

» If two rows of A are interchanged to (ROW INTERCHANGE)
get B, then det (B) = —det (A).
> If one row of A is multiplied by k to get B, then
det (B) = k - det (A).
Let A be reduced to echelon form U by row replacements and r
row interchanges, then

det (A) = (—1)" det (U).

29 /50



Let A € R"™ be a square matrix

Thm: If a multiple of one row of A is added to another row (ROW
REPLACEMENT) to get matrix B, then det (B) = det (A).
PROOF BY INDUCTION ON n: Proof structure

» Show Thm true for n =2
» Assume Thm true forn=k > 2
» Show Thm trueforn=k+1>3

30/50



Let A € R™" be square matrix

Thm: If a multiple of one row of A is added to another row to get
matrix B, then det (B) = det (A).

31/50



Let A € R™" be square matrix
Thm: If a multiple of one row of A is added to another row to get
matrix B, then det (B) = det (A).

PROOF: Forn—=2 let A= | @1 212 | oo p |1 0F
ay1 ax Al

B—FEA— ail ai2
a1+ A-ai1 apn+A-an

is obtained by adding A - row; to rows.

det(B) = a1 (322 + A 312) — aio - (321 + A 311)
= 311 -ay — aip - ax; = det (A) = det(E) - det (A)

since det (E) = 1.

31/50



Let A € R™" be square matrix
Thm: If a multiple of one row of A is added to another row to get
matrix B, then det (B) = det (A).

PROOF: Forn—=2 let A= | @1 212 | oo p |1 0F
ay1 ax Al

B—FEA=— ail ai2
a1+ A-ai1 apn+A-an

is obtained by adding A - row; to rows.

det(B) = a1 -(322+)\'312)—812'(321+/\'311)
= aj1-ax»@ — ap - a1 = det (A) = det(E) - det (A)
since det (E) = 1.

Let E = [ é )1\ ] Then E A is obtained by adding X - row; to

row;, and (exercise)

det (E A) — det (E) . det (A) = det (A).

31/50



Let A € R"™ be a square matrix

Thm: If a multiple of one row of A is added to another row (ROW
REPLACEMENT) to get matrix B, then det (B) = det (A).
PRrROOF: Assume Thm true for n = k > 2

32 /50



(SKETCHY) PROOF for Ae R"™" withn=k+1>3

Without loss of generality, assume ) - row; is added to row; to get

B = E A, with E being identity plus A in position (J, i),
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(SKETCHY) PROOF for Ae R"™ " withn=k+1>3

Without loss of generality, assume ) - row; is added to row; to get

B = E A, with E being identity plus A in position (J, i),

O O S O o 4 cee O [m} [m} O
O an -+ ap a1 O - a, L a1 axp g
det (A) = a1 | . . . L —a2 . o (=)™ gy, .
O am ann a O ann a1 am g
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(SKETCHY) PROOF for Ae R"™" withn=k+1>3

Without loss of generality, assume ) - row; is added to row; to get

B = E A, with E being identity plus A in position (J, i),

O O S O o 4 cee O [m} [m} O
O an -+ ap a1 O - a, L a1 axp g
det (A) = ag; . . X .| —an . . . e (=D ey, .
O ap - am a0 -+ ap a1 ap - O

(Induction works on all k x k determinants; A, B same on row 1)
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(SKETCHY) PROOF for Ae R"™" withn=k+1>3

Without loss of generality, assume ) - row; is added to row; to get

B = E A, with E being identity plus A in position (J, i),

o .- O o o .- O O [m]

[} O

O an - ay ap O o ay a1 ax O

det (A) = ayy —an . . . B s  an T .
O am -+ am am O oo am am am o
(Induction works on all k x k determinants; A, B same on row 1)

O o ... O o o .- O O [m] m}

O by -+ by by O - by, by by [}

=by| . L L —bp L e (=) by, . .

O by o bm b O o b bu  bm o
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(SKETCHY) PROOF for Ae R"™" withn=k+1>3

Without loss of generality, assume ) - row; is added to row; to get

B = E A, with E being identity plus A in position (J, i),

O O

0 ax
det (A) = ag;

I

O O

O by
= b1

O be

det (B)

O

ann

(Induction works o

O
ban

bnn

—a12

n all

— b1z

E has determinant 1. So

o o

azl

anl

O

o

o o
by O
by O

O

a2n

ann

m}
bop

o (=) g,

k x k determinants; A, B s

oot (=) by,

det (E A) = det(E) det(A).

O O O
a1 ax O
anl an2 D
ame on row 1)
O O O
by by [}
bu  bm o
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Let A be a square matrix. Let A be reduced to echelon form U by
row replacements and r row interchanges, then

det (A) = (—1)" det (V).
> If Ais invertible, then U is upper triangular.
det (A) = (—1)" (product of diagonal entries in U).

» If Ais not invertible, then U has free variable columns

det (A) = 0.
[ = #* #* * |
(6] - Y B
U= (8] (8] - B
e (0] (0] -
det &/ == 0O
_- E S E S *_
(6] - Y B
v = o o o -
. O (0] (0] O |
et =
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Let A be a square matrix. Let A be reduced to echelon form U by
row replacements and r row interchanges, then

det (A) = (—1)" det (V).
> If Ais invertible, then U is upper triangular.
det (A) = (—1)" (product of diagonal entries in U).

» If Ais not invertible, then U has free variable columns

det (A) = 0.

[ = #* #* * |

(6] - Y B

U= (8] (8] - B

e (0] (0] -
det &/ == 0O

_- E S E S *_

(6] - Y B

v = o o o -

. O (0] (0] O |
det &/’ = 0O

Ais invertible <= det (A) # 0|
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Example

0 1 2 1 0 3
A=|1 03 |~|01 2 with one row interchange.
4 -3 8 0 0 2

So det(A)=-1-1-2=-2.
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Multiplicative Property
Thm: Let A,B € R™. Then

det (AB) = det (A) det(B).
PROOF: If A is not invertible, then neither is A B (see Book.)
so det(AB)=det(A) det(B)=0.
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Multiplicative Property
Thm: Let A,B € R™. Then

det (AB) = det (A) det(B).
PROOF: If A is not invertible, then neither is A B (see Book.)
so det(AB)=det(A) det(B)=0.

Assume A is invertible, then A is reducible to /, hence equals
product of elementary matrices Eq,--- , Ep:

A = Ey-Epq---Er-Ey
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Multiplicative Property
Thm: Let A,B € R™. Then

det (AB) = det (A) det(B).
PROOF: If A is not invertible, then neither is A B (see Book.)
so det(AB)=det(A) det(B)=0.

Assume A is invertible, then A is reducible to /, hence equals
product of elementary matrices Eq,--- , Ep:

A = E Epq BB
Therefore AB = E,-(Ep—1(---(E2- (E1 B)))).
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Multiplicative Property
Thm: Let A,B € R™. Then
det (AB) = det (A) det(B).
PROOF: If A is not invertible, then neither is A B (see Book.)
so det(AB)=det(A) det(B)=0.

Assume A is invertible, then A is reducible to /, hence equals
product of elementary matrices Eq,--- , Ep:

A = E Epq BB
Therefore AB = E,-(Ep—1(---(E2- (E1 B)))).

det(AB) = det(E,-(Epi (- (E2- (1 B))))
= det(
= det(Ep)- det( _1)---det(E;) - det(B)
= det(E,---Ep)-det(B)
= det(A)det( )

Ep)-det(Ep 1 (---(E2- (E1B)))) ="

36
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

NoTATION:  Aj(b) = [a1,---,aj_1,b,ai11,--- ,a,,].

det (A (b))

Thm: Assume A~! exists. Then x; = det (A)

i=1,---,n.
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

NoTATION:  Aj(b) = [a1,---,aj_1,b,ai11,--- ,a,,].
det (A; (b .
Thm: Assume A~ exists. Then x; = M, i=1,---,n.
det (A)
ProoOF: LET [; (X) = [el, e, €i1,X,€j 41, " ,e,,,]
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

NoTATION:  Aj(b) = [a1,---,aj_1,b,ai11,--- ,a,,].
det (A; (b
Thm: Assume A~ exists. Then x; = M, i=1,---,n.
det (A)
ProoOF: LET [; (X) = [el, e, €i1,X,€j 41, " ,e,,,]
- “ Z
1 X1
li (x) = X
Xi+1 1
- Xn 1 -
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

NOTATION: A; (b) = [al, cee,aAi-1, b,a,—+1, s ,a,,,] .
det (A; (b .
Thm: Assume A~! exists. Then x; = M, i=1,---,n.
det (A)
Proor: LET /; (X) = [el, e, €i1,X,€j 41, " ,e,,,]
- X1 -
1 X1
/; (X) = X; . — det (/,' (X)) = Xj.
Xi+1 1
- Xn 1 -

Ali(x) =[Aey,--- ,Aej_1,Ax,Aeji1, -+ ,Ae, ] = Ai(b).
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

Al(b) = [317"' 7ai—17bvai+17"' 7an>]'
det( ( )) = X, Al; (X) = A,(b)
Therefore,

det (A; (b)) = det (A; (x)) = det (A) det (/; (x)) = det (A) x;

det (A; (b))

S0 XN T et (A)

L i=1,-,n
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§3.3 Cramer’s Rule: solving Ax = b for A € R™"

Al(b) = [alv"' 7ai—17b7ai+17"' 7an>]‘
det( ( )) = X, Al; (X) = A,(b)
Therefore,

det (A; (b)) = det (A; (x)) = det (A) det (/; (x)) = det (A) x

det (A; (b))

S0 XN T et (A)

L i=1,-,n

"For every complex human problem, there is a solution that is
neat, simple and wrong” — H. L. Mencken
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Cramer’s Rule, Example

Ai (b) = [alv"' 7ai717bvai+l7"' 7an7]-

_ det (A1 (b))

At VA eV
N T T der(A) T

1 2 -2
LetA—[_1 3], b—[ 5].Thendet(A)—’_1 3’—5.
2
5

’ — —16, det (A, (b)) =

_det(Ay (b)) 16 det(Ax(b)) 3

det(A)  5° 27 T det(A) 5
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§3.3 Determinant as Area

Thm: For A € R?>*?, the area of the parallelogram determined by
the columns of A is |det (A)].
PROOF:

» If Ais not invertible, then |det (A)] = 0. Columns of A are
parallel, hence parallelogram becomes a line segment, with
area = 0.
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§3.3 Determinant as Area

Thm: For A € R?>*?, the area of the parallelogram determined by
the columns of A is |det (A)|.
PROOF:
» If Ais not invertible, then |det (A)] = 0. Columns of A are
parallel, hence parallelogram becomes a line segment, with
area = 0.
» We now assume If A is invertible in the rest of the proof.
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§3.3 Determinant as Area

Thm: For A € R?*?, the area of the parallelogram determined by
the columns of A is |det (A)].

PROOF: If A = [ g 2 ] is diagonal. Then |det (A)| = |ad|.

»

2]

[5]
(0]
FIGURE 1

Area — |lad]-

Area of parallelogram is also |ad]|.
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§3.3 Determinant as Area

Thm: For A € R?*2, the volume of the parallelogram determined
by the columns of A is |det (A)].

PROOF: Let A € R?*2 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.

» one row + ¢ X another —> same row
This operation does not change |det (A)|.

» Now only need to prove this operation does not change area
either.
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let A=[a; ax |, and B=[a; ax+cay |. Then
|det (A)| = |det (B)|

|
|
|
|
"
0

cal

FIGURE 2 Two parallelograms of equal area.

» L is a line through 0 and aj.
» ap + L is a line through ay and parallel to L.

» Both parallelograms have same base and height,
hence same area.
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§3.3 Determinant as Volume
Thm: For A € R3*3, the volume of the parallelepiped determined

by the columns of A is |det (A)].
a 00

Proor: f A= | 0 b 0 | isdiagonal. Then
0 0 ¢

\det (A)| = |abc].

Volume of parallelepiped is also |abc|.
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§3.3 Determinant as Volume

Thm: For A € R3*3, the volume of the parallelepiped determined
by the columns of A is |det (A)].

PROOF: Let A € R3*3 be invertible. A can be reduced to
diagonal matrix with two types of operations:

> interchange two columns.
This operation does not change |det (A)| or area of the
parallelogram.

» one row + ¢ X another —> same row
This operation does not change |det (A)|.

» Now only need to prove this operation does not change area
either.
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let A=[a; a; a3 ],and B=[a; ax+ca; az|. Then
|det (A)| = |det (B)|

»)

W
0‘\
xcﬁ

0 3

FIGURE 4 Two parallelepipeds of equal volume.

» Base in Span (a1, as3).

» ap + Span(aj, a3) is a plane parallel Span (a1, a3).

» Both parallelepipeds have same base and height,
hence same volume.
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Vector Space and Subspace

» Vector Space is a set V of objects (vectors)
» OPERATIONS: addition and scalar multiplication

» Axioms below work for all u,v € V and all scalars.

1. The sum of u and v, denoted by u + v,isin V.
2.u+v=v+tu
3. u+v)+w=u+(v+w).
4. There is a zero vector 0 in V such thatu + 0 = u.
5. Foreach u in V, there is a vector —u in ¥ such thatu + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, is in V.
7. c(a+v) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u.
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Vector Space: Example (1)

1. The sum of u and v, denoted by u + v, isin V.
2. u+v=v+u
3. m4v)+w=u+(v+w).
4. There is a zero vector 0 in ¥ such thatu 4+ 0 = u.
5. Foreach uin V, there is a vector —u in ¥ such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, isin V.
7. cu+v) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u
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Vector Space: Example (I1)

1. The sum of u and v, denoted by u + v,isin V.
2. u+v=v+uw
o (u+v)+w=u+(v+w).
4. There is a zero vector 0 in ¥ such thatu + 0 = u.
5. Foreach u in V, there is a vector —u in V such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, isin V.
7. c(u+v¥) =cu+cv.
8. (c+du=cu+du
9. ¢(du) = (cd)u.
10. lu=u.

V = P3, set of all polynomials of degree at most 3, of form:

p(t) =ao+art+at?+ ast’
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Vector Space: Example (I1)

. The sum of u and v, denoted by u + v, isin V.

ut+v=viuw

+v)+w=u+(v+w).

There is a zero vector 0 in ¥ such thatu 4+ 0 = u.

. Foreach uin V, there is a vector —u in ¥ such thatu 4 (—u) = 0.
. The scalar multiple of u by ¢, denoted by cu, isin V.

. c(u+v¥) =cu+ev.

. (e +du=cu+du

. ¢(du) = (cd)u.

. lu=u.

- RS - NV R S O

[
=

V = P3, set of all polynomials of degree at most 3, of form:
p(t) =ao+art+at?+ ast’

> ADDITION: Let q(t) = by + by t + by t? + b3tS.

(p+a)(t) & (a0 + bo)+(a1 + br) t+(a2 + by) 2+(a3 + b3) 2 € P3

» SCALAR MULTIPLICATION:

(ap) (1) E (vag) + (var) t+ (wan) 2+ (aas) 3 € Ps
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Vector Space is a set

If needles were vectors, then the cactus would be vector space.

Vectors can point to all possible directions, have all possible sizes.

DA
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