Matrix Transpose

Transpose of matrix A is denoted A^T , and formed by setting each column in A^T from corresponding row in A.

Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$.

Then
$$A^T = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 2 & -1 \\ 2 & -1 \\ 1 & 0 \end{bmatrix}$.

Matrix Transpose

Transpose of matrix A is denoted A^T , and formed by setting each column in A^T from corresponding row in A.

Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$.

Then
$$A^T = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 2 & -1 \\ 2 & -1 \\ 1 & 0 \end{bmatrix}$.

Theorem:
$$(A^T)^T = A$$
, $(AB)^T = B^T A^T$.

$$2 \times 2$$
 system of equations $A \mathbf{x} = \mathbf{b}$: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

In scalar form:
$$ax_1 + bx_2 = \beta_1$$
, (ℓ_1)
 $cx_1 + dx_2 = \beta_2$. (ℓ_2)

$$2 \times 2$$
 system of equations $A \mathbf{x} = \mathbf{b}$: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

In scalar form:
$$a x_1 + b x_2 = \beta_1$$
, (ℓ_1)
 $c x_1 + d x_2 = \beta_2$. (ℓ_2)

- $d \times (\ell_1) b \times (\ell_2) \Longrightarrow (a d c b) x_1 = d \beta_1 b \beta_2.$
- $a \times (\ell_2) c \times (\ell_1) \Longrightarrow (a d c b) x_2 = a \beta_2 c \beta_1.$

$$2 \times 2$$
 system of equations $A \mathbf{x} = \mathbf{b}$: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

In scalar form:
$$a x_1 + b x_2 = \beta_1$$
, (ℓ_1)
 $c x_1 + d x_2 = \beta_2$. (ℓ_2)

- $d \times (\ell_1) b \times (\ell_2) \Longrightarrow (a d c b) x_1 = d \beta_1 b \beta_2.$
- $a \times (\ell_2) c \times (\ell_1) \Longrightarrow (a d c b) x_2 = a \beta_2 c \beta_1.$

Assume $ad - cb \neq 0$.

$$\mathbf{x} = \frac{1}{a d - c b} \begin{bmatrix} d \beta_1 - b \beta_2 \\ a \beta_2 - c \beta_1 \end{bmatrix} = \frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

$$2 \times 2$$
 system of equations $A \mathbf{x} = \mathbf{b}$: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

In scalar form:
$$a x_1 + b x_2 = \beta_1$$
, (ℓ_1)
 $c x_1 + d x_2 = \beta_2$. (ℓ_2)

- $d \times (\ell_1) b \times (\ell_2) \Longrightarrow (a d c b) x_1 = d \beta_1 b \beta_2.$
- $a \times (\ell_2) c \times (\ell_1) \Longrightarrow (a d c b) x_2 = a \beta_2 c \beta_1.$

Assume $ad - cb \neq 0$.

$$\mathbf{x} = \frac{1}{a d - c b} \begin{bmatrix} d \beta_1 - b \beta_2 \\ a \beta_2 - c \beta_1 \end{bmatrix} = \frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
$$= \left(\frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right) \mathbf{b} \stackrel{def}{=} A^{-1} \mathbf{b}.$$

$$2 \times 2$$
 system of equations $A \mathbf{x} = \mathbf{b}$: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

In scalar form:
$$a x_1 + b x_2 = \beta_1$$
, (ℓ_1)
 $c x_1 + d x_2 = \beta_2$. (ℓ_2)

$$d \times (\ell_1) - b \times (\ell_2) \Longrightarrow (a d - c b) x_1 = d \beta_1 - b \beta_2.$$

$$a \times (\ell_2) - c \times (\ell_1) \Longrightarrow (a d - c b) x_2 = a \beta_2 - c \beta_1.$$

Assume $ad - cb \neq 0$.

$$\mathbf{x} = \frac{1}{a d - c b} \begin{bmatrix} d \beta_1 - b \beta_2 \\ a \beta_2 - c \beta_1 \end{bmatrix} = \frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
$$= \left(\frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\right) \mathbf{b} \stackrel{def}{=} A^{-1} \mathbf{b}.$$

Determinant: det (A) = a d - c b. So A^{-1} exists

$$\iff$$
 det $(A) \neq 0$.

Inverse of Matrix (I)

$$2\times 2 \text{ matrix} \quad A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right], \quad A^{-1} = \frac{1}{a\,d-c\,b} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

Let
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 be the **identity matrix**. Then $AI = IA = A$, $Ix = x$ for all A and x .

$$A^{-1}A = \left(\frac{1}{a\,d-c\,b} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right] \right) \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = I = AA^{-1}.$$

Inverse of Matrix (I)

$$2 \times 2 \text{ matrix} \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \frac{1}{a d - c b} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Let
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 be the **identity matrix**. Then $AI = IA = A$, $Ix = x$ for all A and x .

$$A^{-1}A = \left(\frac{1}{a\,d-c\,b} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right] \right) \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = I = AA^{-1}.$$

Definition: Matrix $A \in \mathbb{R}^{n \times n}$ is **invertible** if there exists matrix

$$C \in \mathcal{R}^{n \times n}$$
 so that $CA = I = AC$, with $I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$ identity.

C is called **inverse** of A, denoted as A^{-1} .

Inverse of Matrix (II)

EX: Let
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
, then $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

$$\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right] \ \mathbf{x} = \left[\begin{array}{c} 1 \\ -2 \end{array}\right] \quad \text{has solution} \quad \mathbf{x} = A^{-1} \left[\begin{array}{c} 1 \\ -2 \end{array}\right] = \frac{1}{10} \left[\begin{array}{c} 8 \\ -7 \end{array}\right].$$

Inverse of Matrix (II)

EX: Let
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
, then $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

$$\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 1 \\ -2 \end{array}\right] \quad \text{has solution} \quad \mathbf{x} = A^{-1} \left[\begin{array}{c} 1 \\ -2 \end{array}\right] = \frac{1}{10} \left[\begin{array}{c} 8 \\ -7 \end{array}\right].$$

EX:
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
, then (later show) $A^{-1} = \frac{1}{2} \begin{bmatrix} -9 & 14 & -3 \\ -4 & 8 & -2 \\ 3 & -4 & 1 \end{bmatrix}$.

$$A\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 has solution $\mathbf{x} = A^{-1} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -13 \\ -7 \\ 4 \end{bmatrix}$.

Inverse Matrix (III)

Theorem: Let $A, B \in \mathbb{R}^{n \times n}$ be invertible

$$(A^{-1})^{-1} = A$$

Inverse Matrix (III)

Theorem: Let $A, B \in \mathbb{R}^{n \times n}$ be invertible

- $(A^{-1})^{-1} = A$
- $(A^T)^{-1} = (A^{-1})^T$

Inverse Matrix (III)

Theorem: Let $A, B \in \mathbb{R}^{n \times n}$ be invertible

- $(A^{-1})^{-1} = A$
- $(A^T)^{-1} = (A^{-1})^T$
- $(AB)^{-1} = B^{-1}A^{-1}$

Proof:

$$(B^{-1}A^{-1})(AB) = (B^{-1})(A^{-1}A)B$$

= $(B^{-1})B = I$

Similarly

$$(A B) (B^{-1} A^{-1}) = I.$$

Therefore $(AB)^{-1} = B^{-1}A^{-1}$. **QED**

Elementary Operation \Longrightarrow Elementary Matrix $(E_{1,3})$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_1 \stackrel{interchange}{\Longleftrightarrow} row_3$

$$A \implies \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\stackrel{def}{=} E_{1,3} A$$

Elementary Operation \Longrightarrow Elementary Matrix $(E_{1,3})$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_1 \stackrel{interchange}{\Longleftrightarrow} row_3$

$$A \implies \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\stackrel{def}{=} E_{1,3} A$$

▶ $E_{1,3}$ obtained by $\mathbf{row}_1 \overset{interchange}{\Longleftrightarrow} \mathbf{row}_3$ on I.

Elementary Operation \Longrightarrow Elementary Matrix (\tilde{E}_2)

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_3 - 2 row_1 \Longrightarrow row_3$

$$A \implies \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} - 2 a_{11} & a_{32} - 2 a_{12} & a_{33} - 2 a_{13} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \stackrel{def}{=} \widehat{E}_2 A$$

Elementary Operation \Longrightarrow Elementary Matrix (\tilde{E}_2)

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_3 - 2 row_1 \Longrightarrow row_3$

$$A \implies \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} - 2 a_{11} & a_{32} - 2 a_{12} & a_{33} - 2 a_{13} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \stackrel{def}{=} \widehat{E}_2 A$$

▶ \widehat{E}_2 obtained by $\mathbf{row}_3 - 2 \mathbf{row}_1 \Longrightarrow \mathbf{row}_3$ on I.

Elementary Operation ⇒ Elementary Matrix

▶ Every elementary operation on $A \Longrightarrow E A$, where E is result of same EO on identity.

Elementary Operation ⇒ Elementary Matrix

- ▶ Every elementary operation on $A \Longrightarrow E A$, where E is result of same EO on identity.
- ▶ Each elementary matrix E is invertible. E^{-1} is elementary matrix that transforms E to identity.

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_1 \stackrel{interchange}{\Longleftrightarrow} row_3$

$$A \implies E_{1,3} A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A$$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $ightharpoonup row_1 \stackrel{interchange}{\Longleftrightarrow} row_3$

$$A \implies E_{1,3} A = \left| \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right| A$$

$$ightharpoonup E_{1,3}^{-1} = E_{1,3}.$$

Inverse of (row interchange) = (same interchange).

 $ightharpoonup row_3 - 2 row_1 \Longrightarrow row_3$

$$A \implies \widehat{E}_2 A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} \right] A$$

ightharpoonup row₃ -2 row₁ \Longrightarrow row₃

$$A \implies \widehat{E}_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$

$$\widehat{E}_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Inverse of $(row_3 - 2 row_1 \Longrightarrow row_3)$ is $(row_3 + 2 row_1 \Longrightarrow row_3)$

Let
$$A \in \mathbb{R}^{n \times n}$$
 be invertible $(A^{-1} \text{ exists})$. Then in $A \mathbf{x} = \mathbf{b}$:

$$\mathbf{x} = I \mathbf{x} = (A^{-1} A) \mathbf{x} = A^{-1} (A \mathbf{x}) = A^{-1} \mathbf{b}.$$

Let $A \in \mathbb{R}^{n \times n}$ be invertible $(A^{-1} \text{ exists})$. Then in $A \mathbf{x} = \mathbf{b}$:

$$\mathbf{x} = I \mathbf{x} = (A^{-1} A) \mathbf{x} = A^{-1} (A \mathbf{x}) = A^{-1} \mathbf{b}.$$

▶ If we know A^{-1} , computing **x** is easy.

Let $A \in \mathbb{R}^{n \times n}$ be invertible $(A^{-1} \text{ exists})$. Then in $A \mathbf{x} = \mathbf{b}$:

$$\mathbf{x} = I \mathbf{x} = (A^{-1} A) \mathbf{x} = A^{-1} (A \mathbf{x}) = A^{-1} \mathbf{b}.$$

- ▶ If we know A^{-1} , computing **x** is easy.
- ▶ Otherwise, can we compute A^{-1} ?

Let $A \in \mathbb{R}^{n \times n}$ be invertible $(A^{-1} \text{ exists})$. Then in $A \mathbf{x} = \mathbf{b}$:

$$\mathbf{x} = I \mathbf{x} = (A^{-1} A) \mathbf{x} = A^{-1} (A \mathbf{x}) = A^{-1} \mathbf{b}.$$

- ▶ If we know A^{-1} , computing **x** is easy.
- ▶ Otherwise, can we compute A^{-1} ? (YES, but expensive.)

Theorem: $A \in \mathbb{R}^{n \times n}$ Invertible \iff A row reducible to I

PROOF: Let A invertible ($\stackrel{?}{\Longrightarrow}$ A row reducible to I)

- **Equation** $A \mathbf{x} = \mathbf{b}$ has a solution for EACH \mathbf{b}
- A has pivot in every row
- ➤ A has no free variables (A square matrix)
- A reducible to 1.

Theorem: $A \in \mathbb{R}^{n \times n}$ Invertible \iff A row reducible to I

PROOF: Let A row reducible to I ($\stackrel{?}{\Longrightarrow}$ A invertible)

▶ Let A be reduced to I by elementary matrices E_1, \dots, E_p

$$E_{p}\left(E_{p-1}\left(\cdots\left(E_{1}A\right)\right)\right)=I.$$

which is
$$(E_p E_{p-1} \cdots E_1) A = I$$
.

Therefore

$$A^{-1} = (E_p E_{p-1} \cdots E_1) = E_p (E_{p-1} (\cdots (E_1 I))).$$

As you reduce A to I with elementary operations, you turn I to A⁻¹.

Computing A^{-1} vs. Solving $A \mathbf{x} = \mathbf{b}$

▶ Computing A^{-1} :

$$E_p(E_{p-1}(\cdots(E_1(A I)))) = (I A^{-1}).$$

Computing A^{-1} vs. Solving $A \mathbf{x} = \mathbf{b}$

▶ Computing A^{-1} :

$$E_p\left(E_{p-1}\left(\cdots\left(E_1\;\left(A\quad I\right)\right)\right)\right)=\begin{pmatrix} I\quad A^{-1}\end{pmatrix}.$$

▶ Solving $A\mathbf{x} = \mathbf{b}$:

$$E_p(E_{p-1}(\cdots(E_1(A \mathbf{b})))) = (I A^{-1}\mathbf{b}).$$

Computing A^{-1} vs. Solving $A \mathbf{x} = \mathbf{b}$

▶ Computing A^{-1} :

$$E_p(E_{p-1}(\cdots(E_1(A I)))) = (I A^{-1}).$$

▶ Solving A **x** = **b**:

$$E_p(E_{p-1}(\cdots(E_1(A \mathbf{b})))) = (I A^{-1}\mathbf{b}).$$

In practice, only row echelon form needed for A^{-1} **b** and A^{-1}

Computing A^{-1} as Solving AX = I

- ▶ Let $A \in \mathbb{R}^{n \times n}$ be invertible,
- ▶ $I = (\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n)$ be the identity matrix, where \mathbf{e}_j is 1 at j^{th} component and 0 elsewhere, $1 \le j \le n$.
- $A^{-1} = X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$

Then
$$A(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_n)=(\mathbf{e}_1,\mathbf{e}_2,\cdots,\mathbf{e}_n),$$

Computing A^{-1} as Solving AX = I

- ▶ Let $A \in \mathbb{R}^{n \times n}$ be invertible,
- ▶ $I = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ be the identity matrix, where \mathbf{e}_i is 1 at j^{th} component and 0 elsewhere, $1 \le j \le n$.
- $A^{-1} = X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$

Then
$$A(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_n)=(\mathbf{e}_1,\mathbf{e}_2,\cdots,\mathbf{e}_n),$$

or
$$A \mathbf{x}_j = \mathbf{e}_j$$
, $j = 1, \dots n$.

$$E_p(E_{p-1}(\cdots(E_1(A(e_1,e_2,\cdots,e_n)))))=(I(A^{-1}e_1,A^{-1}e_2,\cdots,A^{-1}e_n)).$$

Computing A^{-1} as Solving AX = I

- ▶ Let $A \in \mathbb{R}^{n \times n}$ be invertible,
- ▶ $I = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ be the identity matrix, where \mathbf{e}_j is 1 at j^{th} component and 0 elsewhere, $1 \le j \le n$.
- $A^{-1} = X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$

Then
$$A(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_n)=(\mathbf{e}_1,\mathbf{e}_2,\cdots,\mathbf{e}_n),$$

or
$$A\mathbf{x}_j = \mathbf{e}_j$$
, $j = 1, \cdots n$.

$$E_p(E_{p-1}(\cdots(E_1(A(e_1,e_2,\cdots,e_n)))))=(I(A^{-1}e_1,A^{-1}e_2,\cdots,A^{-1}e_n)).$$

More computations to compute A^{-1} than to solve $A \mathbf{x} = \mathbf{b}$

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- j. There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- **j.** There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

Proof approach: $a. \Longrightarrow j. \Longrightarrow d. \Longrightarrow a.$

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- j. There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

Proof of $\mathbf{a.} \Longrightarrow \mathbf{j.}$:

If A is invertible, then $C = A^{-1}$ works for **j**.

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- **j.** There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

Proof of $\mathbf{j.} \Longrightarrow \mathbf{d.}$:

Let $A \mathbf{x} = \mathbf{0}$. Then \mathbf{x} must be $\mathbf{0}$ because

$$x = I x = (C A) x = C (A x) = C 0 = 0.$$

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- **j.** There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

Let $A \in \mathbb{R}^{n \times n}$ be square matrix. Statements below are equivalent.

- **a.** A is invertible.
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- **j.** There is a matrix $C \in \mathbb{R}^{n \times n}$ so that CA = I.

PROOF OF $\mathbf{d.} \Longrightarrow \mathbf{a.}$:

Follows from Theorems 11, 12 in $\S 1.9$:

- Columns of A must be linearly independent. Therefore
- there must be a pivot in each row. QED

§2.3 Inverse Linear Transformation (I)

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$A^{-1}(A\mathbf{x}) = \mathbf{x}, \quad A(A^{-1}\mathbf{x}) = \mathbf{x} \quad \text{for all} \quad \mathbf{x}.$$

FIGURE 2 A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .

DEFINITION: A linear transformation $T: \mathcal{R}^n \longrightarrow \mathcal{R}^n$ is **invertible** if there exists function $S: \mathcal{R}^n \longrightarrow \mathcal{R}^n$ so that

$$S(T(\mathbf{x})) = \mathbf{x}, \quad T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}^n.$$

§2.3 Inverse Linear Transformation (II)

Let A be standard matrix for linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$:

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathcal{R}^n$.

Theorem: T is invertible \iff A is invertible.

For 2 × 2 system of equations
$$A \mathbf{x} = \mathbf{b}$$
: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

In scalar form:
$$a_{11} x_1 + a_{12} x_2 = \beta_1$$
, (ℓ_1)
 $a_{21} x_1 + a_{22} x_2 = \beta_2$. (ℓ_2)

For 2 × 2 system of equations
$$A \mathbf{x} = \mathbf{b}$$
: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

In scalar form:
$$a_{11} x_1 + a_{12} x_2 = \beta_1$$
, (ℓ_1)
 $a_{21} x_1 + a_{22} x_2 = \beta_2$. (ℓ_2)

- ▶ $a_{22} \times (\ell_1) a_{12} \times (\ell_2) \Longrightarrow (a_{11} a_{22} a_{12} a_{21}) x_1 = \square.$
- ightharpoonup Similar formula for x_2 .

For 2 × 2 system of equations
$$A \mathbf{x} = \mathbf{b}$$
: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

In scalar form:
$$a_{11} x_1 + a_{12} x_2 = \beta_1$$
, (ℓ_1)
 $a_{21} x_1 + a_{22} x_2 = \beta_2$. (ℓ_2)

- ▶ $a_{22} \times (\ell_1) a_{12} \times (\ell_2) \Longrightarrow (a_{11} a_{22} a_{12} a_{21}) x_1 = \square.$
- ightharpoonup Similar formula for x_2 .

Determinant of A:
$$\det(A) \stackrel{def}{=} a_{11} a_{22} - a_{12} a_{21} \stackrel{def}{=} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
.

For 2 × 2 system of equations
$$A \mathbf{x} = \mathbf{b}$$
: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

In scalar form:
$$a_{11} x_1 + a_{12} x_2 = \beta_1$$
, (ℓ_1)
 $a_{21} x_1 + a_{22} x_2 = \beta_2$. (ℓ_2)

- ▶ $a_{22} \times (\ell_1) a_{12} \times (\ell_2) \Longrightarrow (a_{11} a_{22} a_{12} a_{21}) x_1 = \square.$
- ▶ Similar formula for x_2 .

Determinant of A:
$$\det(A) \stackrel{\text{def}}{=} a_{11} a_{22} - a_{12} a_{21} \stackrel{\text{def}}{=} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
.

Solution exists
$$\iff$$
 det $(A) \neq 0$.

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = \beta_1, \quad (\ell_1)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = \beta_2. \quad (\ell_2)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = \beta_2. \quad (\ell_2)$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = \beta_1, \quad (\ell_1)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = \beta_2. \quad (\ell_2)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = \beta_2. \quad (\ell_2)$

$$\left| \begin{array}{cc|c} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right| \times (\ell_1) - \left| \begin{array}{cc|c} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array} \right| \times (\ell_2) + \left| \begin{array}{cc|c} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array} \right| \times (\ell_3) :$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = \beta_1, \quad (\ell_1)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = \beta_2. \quad (\ell_2)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = \beta_2. \quad (\ell_2)$

$$\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_1) - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_2) + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_3) :$$

$$\begin{pmatrix} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \right) x_1$$

$$+ \begin{pmatrix} a_{12} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{22} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{32} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \right) x_2$$

$$+ \Box x_3 = \Box. \qquad (\ell_4)$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = \beta_1, \quad (\ell_1)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = \beta_2. \quad (\ell_2)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = \beta_2. \quad (\ell_2)$

$$\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_1) - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_2) + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_3) :$$

$$\begin{pmatrix} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_3) :$$

$$+ \begin{pmatrix} a_{12} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{22} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{32} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_4)$$

$$+ \Box x_3 = \Box. \qquad (\ell_4)$$

Coefficients for x_2, x_3 in $(\ell_4) = 0$. **det** $(A) \stackrel{def}{=}$ coefficient for x_1 .

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = \beta_1, \quad (\ell_1)$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = \beta_2. \quad (\ell_2)$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = \beta_2. \quad (\ell_2)$

$$\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_1) - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \times (\ell_2) + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_3) :$$

$$\begin{pmatrix} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_3) :$$

$$+ \begin{pmatrix} a_{12} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{22} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{32} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_3) :$$

$$+ \begin{pmatrix} a_{12} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{22} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{32} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_4)$$

$$+ \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \times (\ell_4)$$

Coefficients for x_2, x_3 in $(\ell_4) = 0$. **det** $(A) \stackrel{def}{=}$ coefficient for x_1 .

Solution exists
$$\iff$$
 det $(A) \neq 0$.

$$\mathbf{det}(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\
= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$\mathbf{det}(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\
= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \\
= a_{11} \begin{vmatrix} \Box & \Box & \Box \\ a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & \Box & \Box \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & \Box & \Box \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & \Box & \Box \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & \Box & \Box \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & \Box & \Box \end{vmatrix} + a_{31} \begin{vmatrix} \Box & a_{12} & a_{13} \\ \Box & a_{22} & a_{23} \\ \Box & \Box & \Box \end{vmatrix}$$

Example

$$\begin{aligned}
\mathbf{det}(A) &= \begin{vmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{vmatrix} \\
&= 1 \cdot \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 5 & 0 \\ -2 & 0 \end{vmatrix} + 0 \cdot \begin{vmatrix} 5 & 0 \\ 4 & -1 \end{vmatrix} \\
&= 1 \cdot (-2) - 2 \cdot (0) + 0 \cdot (-5) \\
&= -2
\end{aligned}$$

Determinant for $A \in \mathbb{R}^{n \times n}$

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ \Box & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & a_{n2} & \cdots & a_{nn} \end{vmatrix} - a_{21} \begin{vmatrix} \Box & a_{12} & \cdots & a_{1n} \\ \Box & \vdots & \vdots & \ddots & \vdots \\ \Box & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \cdots$$

$$+ (-1)^{n+1} a_{n1} \begin{vmatrix} \Box & a_{12} & \cdots & a_{1n} \\ \Box & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & \Box & \cdots & \Box \end{vmatrix}$$

Determinant for $A \in \mathbb{R}^{n \times n}$

$$\mathbf{det}(A) = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}$$

$$= a_{11} \begin{vmatrix}
\Box & \Box & \cdots & \Box \\
\Box & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\Box & a_{n2} & \cdots & a_{nn}
\end{vmatrix} - a_{21} \begin{vmatrix}
\Box & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
\Box & a_{n2} & \cdots & a_{nn}
\end{vmatrix} + \cdots$$

$$+ (-1)^{n+1} a_{n1} \begin{vmatrix}
\Box & a_{12} & \cdots & a_{1n} \\
\Box & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\Box & \Box & \cdots & \Box
\end{vmatrix}$$

 $\det(A)$ can be expanded along any row or column.

Example

$$\mathbf{det}(A) = \begin{vmatrix} 1 & 5 & 7 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 4 \end{vmatrix} \\
= 1 \cdot \begin{vmatrix} 2 & 4 & -1 \\ 0 & 1 & 1 \\ 0 & 2 & 4 \end{vmatrix} \\
= 2 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \\
= 2 \cdot (2) = 4$$

Upper Triangular Matrix

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \in \mathcal{R}^{n \times n}$$
 be upper

triangular.

$$\mathbf{det}(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11} \cdot a_{22} \cdots a_{nn}$$

§3.2 Properties of Determinants

Let A be a square matrix.

- ▶ If a multiple of one row of A is added to another row (ROW REPLACEMENT) to get matrix B, then det(B) = det(A).
- ▶ If two rows of A are interchanged to (ROW INTERCHANGE) get B, then $\det(B) = -\det(A)$.
- If one row of A is multiplied by k to get B, then det (B) = k ⋅ det (A).

§3.2 Properties of Determinants

Let A be a square matrix.

- ▶ If a multiple of one row of A is added to another row (ROW REPLACEMENT) to get matrix B, then det (B) = det (A).
- ▶ If two rows of A are interchanged to (ROW INTERCHANGE) get B, then det(B) = -det(A).
- If one row of A is multiplied by k to get B, then det (B) = k ⋅ det (A).

Let A be reduced to echelon form U by row replacements and r row interchanges, then

$$\det\left(A\right)=\left(-1\right)^{r}\det\left(U\right).$$

Let $A \in \mathcal{R}^{n \times}$ be a square matrix

Thm: If a multiple of one row of A is added to another row (ROW REPLACEMENT) to get matrix B, then det(B) = det(A). PROOF BY INDUCTION ON n: Proof structure

- ▶ Show **Thm** true for n = 2
- ▶ Assume **Thm** true for $n = k \ge 2$
- ▶ Show **Thm** true for $n = k + 1 \ge 3$

Let $A \in \mathbb{R}^{n \times n}$ be square matrix

Thm: If a multiple of one row of A is added to another row to get matrix B, then $\det(B) = \det(A)$.

Let $A \in \mathbb{R}^{n \times n}$ be square matrix

Thm: If a multiple of one row of A is added to another row to get matrix B, then det(B) = det(A).

PROOF: For
$$n = 2$$
, let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$.

$$B = E A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} + \lambda \cdot a_{11} & a_{22} + \lambda \cdot a_{12} \end{bmatrix}$$

is obtained by adding $\lambda \cdot \mathbf{row}_1$ to \mathbf{row}_2 .

$$\det(B) = a_{11} \cdot (a_{22} + \lambda \cdot a_{12}) - a_{12} \cdot (a_{21} + \lambda \cdot a_{11})
= a_{11} \cdot a_{22} - a_{12} \cdot a_{21} = \det(A) = \det(E) \cdot \det(A)$$
since $\det(E) = 1$.

Let $A \in \mathbb{R}^{n \times n}$ be square matrix

Thm: If a multiple of one row of A is added to another row to get matrix B, then $\det(B) = \det(A)$.

PROOF: For
$$n = 2$$
, let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$.

$$B = E A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} + \lambda \cdot a_{11} & a_{22} + \lambda \cdot a_{12} \end{bmatrix}$$

is obtained by adding $\lambda \cdot \mathbf{row}_1$ to \mathbf{row}_2 .

$$\det(B) = a_{11} \cdot (a_{22} + \lambda \cdot a_{12}) - a_{12} \cdot (a_{21} + \lambda \cdot a_{11})
= a_{11} \cdot a_{22} - a_{12} \cdot a_{21} = \det(A) = \det(E) \cdot \det(A)$$

since **det** (E) = 1.

Let $\widehat{E} = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}$. Then $\widehat{E} A$ is obtained by adding $\lambda \cdot \mathbf{row}_2$ to row_1 , and (exercise)

$$\det\left(\widehat{E}\,A\right) = \det\left(\widehat{E}\right) \cdot \det\left(A\right) = \det\left(A\right).$$

Let $A \in \mathcal{R}^{n \times}$ be a square matrix

Thm: If a multiple of one row of A is added to another row (ROW

REPLACEMENT) to get matrix B, then det(B) = det(A).

PROOF: Assume **Thm** true for $n = k \ge 2$

Without loss of generality, assume $\lambda \cdot \mathbf{row}_i$ is added to \mathbf{row}_j to get B = E A, with E being identity plus λ in position (j, i), i, j > 1.

Without loss of generality, assume $\lambda \cdot \mathbf{row}_i$ is added to \mathbf{row}_j to get B = E A, with E being identity plus λ in position (j, i), [i, j > 1]

$$\det(A) = a_{11} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ \Box & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & a_{n2} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & \Box & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \Box & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{n+1} a_{1n} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & a_{22} & \cdots & \Box \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \Box \end{vmatrix}$$

Without loss of generality, assume $\lambda \cdot \mathbf{row}_i$ is added to \mathbf{row}_j to get B = E A, with E being identity plus λ in position (j, i), [i, j > 1]

(Induction works on all $k \times k$ determinants; A, B same on row 1)

Without loss of generality, assume $\lambda \cdot \mathbf{row}_i$ is added to \mathbf{row}_i to get B = E A, with E being identity plus λ in position (j, i), |i, j > 1.

$$\det(A) = a_{11} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ \Box & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & a_{n2} & \cdots & a_{nn} \end{vmatrix} - a_{12} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & \Box & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \Box & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{n+1} a_{1n} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & a_{22} & \cdots & \Box \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \Box \end{vmatrix}$$

(Induction works on all $k \times k$ determinants; A, B same on row 1)

$$=b_{11} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ \Box & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & b_{n2} & \cdots & b_{nn} \end{vmatrix} -b_{12} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ b_{21} & \Box & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & \Box & \cdots & b_{nn} \end{vmatrix} + \cdots + (-1)^{n+1} b_{1n} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ b_{21} & b_{22} & \cdots & \Box \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & \Box \end{vmatrix}$$

det(B)

Without loss of generality, assume $\lambda \cdot \mathbf{row}_i$ is added to \mathbf{row}_j to get B = E A, with E being identity plus λ in position (j, i), i, j > 1.

$$\det(A) = a_{11} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ \Box & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Box & a_{n2} & \cdots & a_{nn} \end{vmatrix} - a_{12} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & \Box & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \Box & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{n+1} a_{1n} \begin{vmatrix} \Box & \Box & \cdots & \Box \\ a_{21} & a_{22} & \cdots & \Box \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \Box \end{vmatrix}$$

(Induction works on all $k \times k$ determinants; A, B same on row 1)

E has determinant 1. So

$$det(EA) = det(E) det(A)$$
.

Let A be a square matrix. Let A be reduced to echelon form U by row replacements and r row interchanges, then

$$\det\left(A\right)=\left(-1\right)^{r}\det\left(U\right).$$

▶ If A is invertible, then U is upper triangular.

$$\det(A) = (-1)^r$$
(product of diagonal entries in U).

If A is not invertible, then U has free variable columns $\det(A) = 0$.

$$U = \begin{bmatrix} \bullet & * & * & * \\ 0 & \bullet & * & * \\ 0 & 0 & \bullet & * \\ 0 & 0 & 0 & \bullet \end{bmatrix}$$

$$\det U \neq 0$$

$$U = \begin{bmatrix} \bullet & * & * & * \\ 0 & \bullet & * & * \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let A be a square matrix. Let A be reduced to echelon form U by row replacements and r row interchanges, then

$$\det\left(A\right)=\left(-1\right)^{r}\det\left(U\right).$$

▶ If A is invertible, then U is upper triangular.

$$\det(A) = (-1)^r \text{ (product of diagonal entries in } U).$$

If A is not invertible, then U has free variable columns $\det(A) = 0$.

$$U = \begin{bmatrix} \bullet & * & * & * \\ 0 & \bullet & * & * \\ 0 & 0 & \bullet & * \\ 0 & 0 & 0 & \bullet \end{bmatrix}$$

$$\det U \neq 0$$

$$U = \begin{bmatrix} \bullet & * & * & * \\ 0 & \bullet & * & * \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
 with one row interchange.
So $\det(A) = -1 \cdot 1 \cdot 2 = -2$.

Thm: Let $A, B \in \mathbb{R}^{n \times}$. Then

$$\det(AB) = \det(A) \det(B).$$

PROOF: If A is not invertible, then neither is AB (see Book.)

so
$$\det(A B) = \det(A) \det(B) = 0$$
.

Thm: Let $A, B \in \mathbb{R}^{n \times}$. Then

$$\det(AB) = \det(A) \det(B).$$

PROOF: If A is not invertible, then neither is AB (see Book.)

so
$$\det(A B) = \det(A) \det(B) = 0$$
.

Assume A is invertible, then A is reducible to I, hence equals product of elementary matrices E_1, \dots, E_p :

$$A = E_p \cdot E_{p-1} \cdots E_2 \cdot E_1.$$

Thm: Let $A, B \in \mathbb{R}^{n \times}$. Then

$$\det(AB) = \det(A) \det(B).$$

PROOF: If A is not invertible, then neither is AB (see Book.)

so
$$\det(A B) = \det(A) \det(B) = 0$$
.

Assume A is invertible, then A is reducible to I, hence equals product of elementary matrices E_1, \dots, E_p :

$$A = E_p \cdot E_{p-1} \cdots E_2 \cdot E_1.$$
 Therefore
$$AB = E_p \cdot (E_{p-1} (\cdots (E_2 \cdot (E_1 \, B)))).$$

Thm: Let $A, B \in \mathbb{R}^{n \times}$. Then

$$\det(AB) = \det(A) \det(B).$$

PROOF: If A is not invertible, then neither is AB (see Book.)

so
$$\det(A B) = \det(A) \det(B) = 0$$
.

Assume A is invertible, then A is reducible to I, hence equals product of elementary matrices E_1, \dots, E_p :

$$A = E_p \cdot E_{p-1} \cdots E_2 \cdot E_1.$$
 Therefore
$$AB = E_p \cdot (E_{p-1} (\cdots (E_2 \cdot (E_1 B)))).$$

$$\begin{aligned}
\det(AB) &= \det(E_p \cdot (E_{p-1} (\cdots (E_2 \cdot (E_1 B))))) \\
&= \det(E_p) \cdot \det(E_{p-1} (\cdots (E_2 \cdot (E_1 B)))) = \cdots \\
&= \det(E_p) \cdot \det(E_{p-1}) \cdots \det(E_1) \cdot \det(B) \\
&= \det(E_p \cdots E_1) \cdot \det(B) \\
&= \det(A) \det(B)
\end{aligned}$$

 $\S 3.3$ Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathcal{R}^{n \times n}$

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathcal{R}^{n \times n}$

Notation:
$$A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$$

Thm: Assume
$$A^{-1}$$
 exists. Then $x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n$.

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathcal{R}^{n \times n}$

Notation: $A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$

Thm: Assume
$$A^{-1}$$
 exists. Then $x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n$.

PROOF: Let
$$I_i(\mathbf{x}) = [\mathbf{e}_1, \dots, \mathbf{e}_{i-1}, \mathbf{x}, \mathbf{e}_{i+1}, \dots, \mathbf{e}_n,]$$

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$

Notation:
$$A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$$

Thm: Assume
$$A^{-1}$$
 exists. Then $x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n$.

PROOF: Let
$$I_i(\mathbf{x}) = [\mathbf{e}_1, \cdots, \mathbf{e}_{i-1}, \mathbf{x}, \mathbf{e}_{i+1}, \cdots, \mathbf{e}_n,]$$

$$\begin{bmatrix} 1 & x_1 \\ & \ddots & \vdots \end{bmatrix}$$

$$I_{i}(\mathbf{x}) = \begin{bmatrix} 1 & x_{1} & & & & \\ & \ddots & & \vdots & & & \\ & & 1 & x_{i-1} & & & \\ & & & x_{i} & & & \\ & & & x_{i+1} & 1 & & \\ & & & \vdots & & \ddots & \\ & & & x_{n} & & 1 \end{bmatrix}.$$

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$

NOTATION:
$$A_i(\mathbf{b}) = [\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n]$$
.

Thm: Assume
$$A^{-1}$$
 exists. Then $x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}$, $i = 1, \dots, n$.

PROOF: Let
$$l_i(\mathbf{x}) = [\mathbf{e}_1, \dots, \mathbf{e}_{i-1}, \mathbf{x}, \mathbf{e}_{i+1}, \dots, \mathbf{e}_n]$$

$$I_{i}(\mathbf{x}) = \begin{bmatrix} 1 & x_{1} \\ & \ddots & \vdots \\ & & 1 & x_{i-1} \\ & & & x_{i+1} & 1 \\ & & & \vdots & \ddots \\ & & & x_{n} & & 1 \end{bmatrix} \cdot \longrightarrow \mathbf{det}(I_{i}(\mathbf{x})) = x_{i}.$$

$$A I_i(\mathbf{x}) = [A \mathbf{e}_1, \cdots, A \mathbf{e}_{i-1}, A \mathbf{x}, A \mathbf{e}_{i+1}, \cdots, A \mathbf{e}_n,] = A_i(\mathbf{b}).$$

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$

$$A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$$

 $\det(I_i(\mathbf{x})) = x_i, \quad A I_i(\mathbf{x}) = A_i(\mathbf{b}).$

Therefore,

$$\det(A_i(\mathbf{b})) = \det(A I_i(\mathbf{x})) = \det(A) \det(I_i(\mathbf{x})) = \det(A) x_i$$

So
$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n.$$

§3.3 Cramer's Rule: solving $A\mathbf{x} = \mathbf{b}$ for $A \in \mathcal{R}^{n \times n}$

$$A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$$

 $\det(I_i(\mathbf{x})) = x_i, \quad A I_i(\mathbf{x}) = A_i(\mathbf{b}).$

Therefore,

$$\det(A_i(\mathbf{b})) = \det(A I_i(\mathbf{x})) = \det(A) \det(I_i(\mathbf{x})) = \det(A) x_i$$

So
$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n.$$

"For every complex human problem, there is a solution that is neat, simple and wrong" — H. L. Mencken

Cramer's Rule, Example

$$A_i(\mathbf{b}) = [\mathbf{a}_1, \cdots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \cdots, \mathbf{a}_n,].$$

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}, \quad i = 1, \dots, n.$$

Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$. Then $\det(A) = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = 5$.

$$\det (A_1 (\mathbf{b})) = \begin{vmatrix} -2 & 2 \\ 5 & 3 \end{vmatrix} = -16, \ \det (A_2 (\mathbf{b})) = \begin{vmatrix} 1 & -2 \\ -1 & 5 \end{vmatrix} = 3.$$

So

$$x_1 = \frac{\det\left(A_1\left(\mathbf{b}\right)\right)}{\det\left(A\right)} = -\frac{16}{5}, \quad x_2 = \frac{\det\left(A_2\left(\mathbf{b}\right)\right)}{\det\left(A\right)} = \frac{3}{5}.$$

Thm: For $A \in \mathbb{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\mathbf{det}(A)|$.

Proof:

▶ If A is not invertible, then $|\mathbf{det}(A)| = 0$. Columns of A are parallel, hence parallelogram becomes a line segment, with area = 0.

Thm: For $A \in \mathbb{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\mathbf{det}(A)|$.

Proof:

- ▶ If A is not invertible, then $|\mathbf{det}(A)| = 0$. Columns of A are parallel, hence parallelogram becomes a line segment, with area = 0.
- ▶ We now assume If A is invertible in the rest of the proof.

Thm: For $A \in \mathbb{R}^{2 \times 2}$, the area of the parallelogram determined by the columns of A is $|\det(A)|$.

PROOF: If
$$A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$
 is diagonal. Then $|\mathbf{det}(A)| = |ad|$.

FIGURE 1 Area =
$$|ad|$$
.

Area of parallelogram is also |ad|.

Thm: For $A \in \mathbb{R}^{2 \times 2}$, the volume of the parallelogram determined by the columns of A is $|\mathbf{det}(A)|$.

PROOF: Let $A \in \mathbb{R}^{2 \times 2}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

- interchange two columns.
 This operation does not change |det (A)| or area of the parallelogram.
- ▶ one row $+ c \times \text{another} \Longrightarrow \text{same row}$ This operation does not change |det(A)|.
 - Now only need to prove this operation does not change area either.

Let
$$A = [\mathbf{a_1} \ \mathbf{a_2}]$$
, and $B = [\mathbf{a_1} \ \mathbf{a_2} + c \mathbf{a_1}]$. Then $|\mathbf{det}(A)| = |\mathbf{det}(B)|$

FIGURE 2 Two parallelograms of equal area.

- ightharpoonup L is a line through $\mathbf{0}$ and \mathbf{a}_1 .
- ▶ $\mathbf{a}_2 + L$ is a line through \mathbf{a}_2 and parallel to L.
- ▶ Both parallelograms have same base and height, hence same area.

§3.3 Determinant as Volume

Thm: For $A \in \mathcal{R}^{3\times 3}$, the volume of the parallelepiped determined by the columns of A is $|\det(A)|$.

PROOF: If
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
 is diagonal. Then

$$|\mathbf{det}(A)| = |abc|.$$

§3.3 Determinant as Volume

Thm: For $A \in \mathcal{R}^{3\times 3}$, the volume of the parallelepiped determined by the columns of A is $|\det(A)|$.

PROOF: Let $A \in \mathcal{R}^{3\times3}$ be invertible. A can be reduced to diagonal matrix with two types of operations:

- interchange two columns.
 This operation does not change |det (A)| or area of the parallelogram.
- ▶ one row $+ c \times \text{another} \Longrightarrow \text{same row}$ This operation does not change |det(A)|.
 - Now only need to prove this operation does not change area either.

Let
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$$
, and $B = [\mathbf{a}_1 \ \mathbf{a}_2 + c \mathbf{a}_1 \ \mathbf{a}_3]$. Then $|\mathbf{det}(A)| = |\mathbf{det}(B)|$

FIGURE 4 Two parallelepipeds of equal volume.

- ▶ Base in **Span** (a_1, a_3) .
- ▶ $a_2 + \text{Span}(a_1, a_3)$ is a plane parallel $\text{Span}(a_1, a_3)$.
- ▶ Both parallelepipeds have same base and height, hence same volume.

Vector Space and Subspace

- ▶ **Vector Space** is a set *V* of objects (vectors)
- ▶ OPERATIONS: addition and scalar multiplication
- Axioms below work for all $\mathbf{u}, \mathbf{v} \in V$ and all scalars.
 - 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
 - 2. u + v = v + u.
 - 3. (u + v) + w = u + (v + w).
 - **4.** There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
 - 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
 - **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
 - 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
 - 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
 - **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
 - 10. 1u = u.

Vector Space: Example (I)

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.

3.
$$(u + v) + w = u + (v + w)$$
.

- **4.** There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
.

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
.

10.
$$1u = u$$
.

$$V = \mathcal{R}^n$$
.

Vector Space: Example (II)

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- **4.** There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

 $V = \mathcal{P}_3$, set of all polynomials of degree at most 3, of form:

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.$$

Vector Space: Example (II)

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- **4.** There is a zero vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of **u** by c, denoted by c**u**, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

 $V = \mathcal{P}_3$, set of all polynomials of degree at most 3, of form:

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3.$$

• ADDITION: Let $\mathbf{q}(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$.

$$(\mathbf{p} + \mathbf{q})(t) \stackrel{def}{=} (a_0 + b_0) + (a_1 + b_1) t + (a_2 + b_2) t^2 + (a_3 + b_3) t^3 \in \mathcal{P}_3$$

► SCALAR MULTIPLICATION:

$$(\alpha \mathbf{p})(t) \stackrel{\text{def}}{=} (\alpha a_0) + (\alpha a_1) t + (\alpha a_2) t^2 + (\alpha a_3) t^3 \in \mathcal{P}_3$$

Vector Space is a set

If needles were vectors, then the cactus would be vector space.

Vectors can point to all possible directions, have all possible sizes.