
§1.4 Matrix Equation A x = b: Linear Combination (I)



Matrix-vector Product ⇐⇒ Linear Combination (II)

Example:

A =

[
1 2 −1
0 −5 3

]
, x =

 4
3
7


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Linear Equations in terms of Linear Combinations



Existence of Solutions

Example: Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 , and b =

 b1
b2
b3

 .
Question: For what values of b1, b2, b3 is equation Ax = b consistent?

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3


(`2) + (4)× (`1)→ (`2)
(`3) + (3)× (`1)→ (`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 7 5 b3 + 3 b1


(`3)−(1/2)×(`2)→(`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 0 0 b3 + 3 b1 − 1/2(b2 + 4 b1)


Answer: equation Ax = b consistent ⇐⇒ b3 − 1/2 b2 + b1 = 0.



Existence of Solutions

Example: Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 , and b =

 b1
b2
b3

 .
Question: For what values of b1, b2, b3 is equation Ax = b consistent?

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3


(`2) + (4)× (`1)→ (`2)
(`3) + (3)× (`1)→ (`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 7 5 b3 + 3 b1


(`3)−(1/2)×(`2)→(`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 0 0 b3 + 3 b1 − 1/2(b2 + 4 b1)


Answer: equation Ax = b consistent ⇐⇒ b3 − 1/2 b2 + b1 = 0.



Existence of Solutions

Example: Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 , and b =

 b1
b2
b3

 .
Question: For what values of b1, b2, b3 is equation Ax = b consistent?

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3


(`2) + (4)× (`1)→ (`2)
(`3) + (3)× (`1)→ (`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 7 5 b3 + 3 b1


(`3)−(1/2)×(`2)→(`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 0 0 b3 + 3 b1 − 1/2(b2 + 4 b1)



Answer: equation Ax = b consistent ⇐⇒ b3 − 1/2 b2 + b1 = 0.



Existence of Solutions

Example: Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 , and b =

 b1
b2
b3

 .
Question: For what values of b1, b2, b3 is equation Ax = b consistent?

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3


(`2) + (4)× (`1)→ (`2)
(`3) + (3)× (`1)→ (`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 7 5 b3 + 3 b1


(`3)−(1/2)×(`2)→(`3)

=⇒

 1 3 4 b1
0 14 10 b2 + 4 b1
0 0 0 b3 + 3 b1 − 1/2(b2 + 4 b1)


Answer: equation Ax = b consistent ⇐⇒ b3 − 1/2 b2 + b1 = 0.



Equivalent Statements on Existence of Solution (I)

(a)
def⇐⇒ (b)

def⇐⇒ (c).

Will show (a) ⇐⇒ (d)



Equivalent Statements on Existence of Solution (I)

(a)
def⇐⇒ (b)

def⇐⇒ (c).

Will show (a) ⇐⇒ (d)



Equivalent Statements on Existence of Solution (I)

(a)
def⇐⇒ (b)

def⇐⇒ (c).

Will show (a) ⇐⇒ (d)



Equivalent Statements (II): (d) ⇐⇒ (a)

I A has pivot in each row
?

=⇒ Ax = b has solution for each b:

(A | b)
row echelon

=⇒ (U | d) ,

U has a pivot in each row.

=⇒ Ux = d has solution

=⇒ Ax = b has solution. YES!
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Equivalent Statements (III): (d) ⇐⇒ (a)

I Ax = b has solution for each b
?

=⇒ A has pivot in each row:

(A | b)
row echelon

=⇒ (U | d) ,

Ax = b has solution for each b.

=⇒ Let d be vector with all components 1.

(work row echelon backwards, can find corresponding b)

=⇒ Ux = d having solution implies no zero row in U

=⇒ A has a pivot in each row. YES!
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§1.5 Solution Sets of Linear Systems:
Homogeneous Systems Ax = 0

trivial solution: x = 0; any non-zero solution x is non-trivial.

Example: 3 x1 + 5 x2 − 4 x3 = 0,

−3 x1 − 2 x2 + 4 x3 = 0,

6 x1 + x2 − 8 x3 = 0.

Augmented matrix (A | b) to row echelon form 3 5 −4 0
−3 −2 4 0

6 1 −8 0

 ∼
 3 5 −4 0

0 3 0 0
0 −9 0 0

 ∼
 3 5 −4 0

0 3 0 0
0 0 0 0


x3 is free variable.
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Homogeneous Systems Example (I)

Augmented matrix in row echelon form 3 5 −4 0
0 3 0 0
0 0 0 0


x3 is free variable.

Solution is

 x1
x2
x3

 = x3

 4
3
0
1

 ,

Set of Solutions = span

 4
3
0
1

 .



Homogeneous Systems Example (I)
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Homogeneous Systems Example (II)

Example 2: Augmented matrix in row echelon form(
1 1 1 1 0
0 0 2 4 0

)
x2, x4 are free variables.

Solution is


x1
x2
x3
x4

 = x2


1
−1

0
0

+ x4


1
0
−2

1

 ,

Set of Solutions = span




1
−1

0
0

 ,


1
0
−2

1


 .

In general, set of solutions to Ax = 0 is span (v1, v2, · · · , vp),
where p is number of free variables.
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§1.5 Solution Sets of Linear Systems:
Nonhomogeneous Systems Ax = b (6= 0)

Example 3: Augmented matrix for Ax = b:(
1 1 1 1 1
0 0 2 4 −2

)
x2, x4 are free variables.

Solution is x =


2
0
−1

0


︸ ︷︷ ︸

+ x2


1
−1

0
0

+ x4


1
0
−2

1


︸ ︷︷ ︸

,

def
= p + vh,

where Ap = b, Avh = 0.
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§1.7 Linear Independence

Since x1 v1+x2 v2+· · ·+xp vp =
(
v1, v2, · · · , vp

)


x1
x2

...
xp

 ,

Vectors
{

v1, v2, · · · , vp
}

are linear independent ⇐⇒

system of equations
(
v1, v2, · · · , vp

)
x = 0

does not have non-trivial solution.
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Linear Independence: Examples (I)

I Let v1 =

 1
2
3

 , v2 =

 4
5
6

 , v3 =

 2
1
0

. Determine if

they are Linearly Independent.

Solution: Form matrix and do row echelon

(
v1, v2, v3 0

)
=

 1 4 2 0
2 5 1 0
3 6 0 0


∼

 1 4 2 0
0 −3 −3 0
0 0 0 0



Free-variable is x3. Choose x3 = 1, solution is x =

 2
−1

1

,

so: 2 v1 − v2 + v3 = 0. Linearly Dependent
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Linear Independence: Examples (II)

I Determine if columns of matrix

 0 1 4
1 2 −1
5 8 0

 are Linearly

Independent.

Solution: Do row echelon for A x = 0: 0 1 4 0
1 2 −1 0
5 8 0 0

 ∼

 1 2 −1 0
0 1 4 0
0 0 13 0


No free-variable. Columns of matrix Linearly Independent
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Linear Independence: One vector

Let v be a vector, c scalar, and

c v = 0.

I If v 6= 0, then c must be 0, {v} Linearly Independent.

I If v = 0, then c = 1, {v} Linearly Dependent.



Linear Independence: Two vectors
Let v1, v2 be two vectors, c1, c2 scalars, and

c1 v1 + c2 v2 = 0.

If {v1, v2} linearly dependent,
I Either c1 6= 0, then

v1 = − (c2/c1) v2

I Or c2 6= 0, then
v2 = − (c1/c2) v1

v1, v2 linearly dependent ⇐⇒ one is multiple of the other.
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Linear Independence: At least Two vectors (I)

Let S = {v1, v2, · · · , vp} be a set of p ≥ 2 vectors.

I S is linearly dependent ⇐⇒ one vector in S is linear
combination of others.

I If S is linearly dependent and v1 6= 0, then some vj is linear
combination of v1, · · · , vj−1.

Example: Let v1 =

 1
2
3

 , v2 =

 4
5
6

 , v3 =

 2
1
0

.

Then: 2 v1 − v2 + v3 = 0. Linearly dependent

Therefore: v3 = −2 v1 + v2, for j = 3.
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combination of others.

I If S is linearly dependent and v1 6= 0, then some vj is linear
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 1
2
3

 , v2 =

 4
5
6

 , v3 =

 2
1
0

.

Then: 2 v1 − v2 + v3 = 0. Linearly dependent

Therefore: v3 = −2 v1 + v2, for j = 3.



Linear Independence: At least Two vectors (II)

Let S = {v1, v2, · · · , vp} be a set of p ≥ 2 vectors.

I Theorem: If S is linearly dependent and v1 6= 0, then some
vj is linear combination of v1, · · · , vj−1.

Proof: Let

c1 v1 + c2 v2 + · · ·+ cp vp = 0, (`)

with some of c1, c2, · · · , cp 6= 0.
Let j be the largest subscript for which cj 6= 0. If j = 1, then (`)
becomes

c1 v1 = 0,

which is impossible because v1 6= 0.
So j > 1, and (`) becomes

vj = − (c1/cj) v1 − (c2/cj) v2 + · · ·+ (cj−1/cj) vj−1. QED
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Linear Independence (III)

Let S = {v1, v2, · · · , vp} be a set of vectors.

I Theorem: If S contains the 0 vector, then S is linearly
dependent.

Proof: Let vj = 0 for some index j , then

0× v1 + · · ·+ 0× vj−1 + 1× vj + 0× vj+1 + 0× vp = 0.



Linear Independence (III)

Let S = {v1, v2, · · · , vp} be a set of vectors.

I Theorem: If S contains the 0 vector, then S is linearly
dependent.

Proof: Let vj = 0 for some index j , then

0× v1 + · · ·+ 0× vj−1 + 1× vj + 0× vj+1 + 0× vp = 0.



Linear Independence (IV)

Let S = {v1, v2, · · · , vp} be a set of p vectors.

I Theorem: If vectors v1, v2, · · · , vp contains n components
each with n < p, then S is linearly dependent.

Proof: Let A = (v1, v2, · · · , vp). Then A is an n × p matrix, with
more columns than rows.
Thus the row echelon form for the augmented matrix (A | 0)
must have free variable columns.
Therefore A x = 0 must have a non-trivial solution, and columns of
A linearly dependent. QED
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Linear Independence (IV)

Let S = {v1, v2, · · · , vp} be a set of p vectors.

I Theorem: If vectors v1, v2, · · · , vp contains n components
each with n < p, then S is linearly dependent.

Proof: Let A = (v1, v2, · · · , vp). Then A is an n × p matrix, with
more columns than rows.
Thus the row echelon form for the augmented matrix (A | 0)
must have free variable columns.
Therefore A x = 0 must have a non-trivial solution, and columns of
A linearly dependent. QED



Linear Independence (V)

Let S = {v1, v2, · · · , vp} be a set of p vectors.

I Theorem: If vectors v1, v2, · · · , vp contains n components
each with n < p, then S is linearly dependent.

Example: vectors

(
0
1

)
,

(
2
1

)
,

(
α1

α2

)
are linearly dependent

for any α1, α2.



Linear Independence (V)

Let S = {v1, v2, · · · , vp} be a set of p vectors.

I Theorem: If vectors v1, v2, · · · , vp contains n components
each with n < p, then S is linearly dependent.

Example: vectors

(
0
1

)
,

(
2
1

)
,

(
α1

α2

)
are linearly dependent

for any α1, α2.



Introduction to Linear Transformations: Example

Given A =

[
4 −3 1 3
2 0 5 1

]
, linear transform is a function:

A (4 component vector) = (2 component vector) .
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Linear Transformations



Matrix Transformation: Definition
Given matrix A ∈ Rm×n, matrix transform is function from Rn to Rm:

For each x ∈ Rn, T (x)
def
= A x (∈ Rm) .

I For each x, vector T (x) is called image of x.
I The set of all images T (x) is called range of T .

Ex: Let A =

 1 −3
3 5
−1 7

. Def matrix transformation T : R2 −→ R3:

T (x) = A x =

 1 −3
3 5
−1 7

[ x1
x2

]
=x1

 1
3
−1

+x2

 −3
5
7

 =

 x1 − 3 x2
3 x1 + 5 x2
−x1 + 7 x2


︸ ︷︷ ︸

image

range of T = span

 1
3
−1

 ,
 −3

5
7

 .
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Matrix Transformation: Example

Let A =

 1 −3
3 5
−1 7

. Def matrix transformation T : R2 −→ R3:

T (x) = A x =

 1 −3
3 5
−1 7

[ x1
x2

]
=

 x1 − 3 x2
3 x1 + 5 x2
−x1 + 7 x2


I For u =

[
2
−1

]
, find image T (u).

Solution:

T (u) = Au =

 1 −3
3 5
−1 7

 [ 2
−1

]
=

 5
1
−9

 .
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Matrix Transformation: Example

T (x) = A x =

 1 −3
3 5
−1 7

[ x1
x2

]
=

 x1 − 3 x2
3 x1 + 5 x2
−x1 + 7 x2



I Find x ∈ R2 whose image under T is b =

 3
2
−5

.

I Is there more than one x whose image under T is b?

Solution: T (x) = b ⇐⇒ A x = b. Row echelon on (A | b): 1 −3 3
3 5 2
−1 7 −5

 ∼
 1 −3 3

0 1 −0.5
0 0 0

 .
pre-image x =

[
1.5
−0.5

]
is unique.
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Matrix Transformation: Example

T (x) = A x =

 1 −3
3 5
−1 7

[ x1
x2

]
=

 x1 − 3 x2
3 x1 + 5 x2
−x1 + 7 x2



I Determine if c =

 3
2
5

 is in the range of T .

Solution: c is in the range of T ⇐⇒ c is image of some
x ∈ R2. Let A x = c. Row echelon on (A | c): 1 −3 3

3 5 2
−1 7 5

 ∼
 1 −3 3

0 1 2
0 0 −35

 .
Equations have no solution, c is not in the range of T .
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Linear Transformation: Definition

Given matrix A ∈ Rm×n, a transformation is a function from

Rn ( = domain) to Rm ( = codomain)

I Matrix Transformation is linear transformation.

I · · ·
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What Transformation is not Linear



Linear Transformation: Simple Facts

I Take c = 0 in (ii)
T (0) = 0.

I (i) + (ii)

T (cu + dv) = T (cu) + T (dv)

= c T (u) + d T (v) (`)
I Repeat on (`)

T (c1u1 + c2u2 + · · ·+ cpup) = c1T (u1)+c2T (u2)+· · ·+cpT (up)
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Example Linear Transformation T : R2 → R2

T (x) = A x =

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2
x1

]
Find the images under T of u =

[
4
1

]
, v =

[
2
3

]
, and

u + v =

[
6
4

]
.

Solution: T is a flip-reflection

T (u) =

[
−1

4

]
,T (v) =

[
−3

2

]
,T (u + v) =

[
−4

6

]
.
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§1.9 The Matrix of a Linear Transformation

Motivating example: Define e1, e2 below.

Let linear transformation T : R2 → R3 satisfy

T (e1) =

 5
−7

2

 and T (e2) =

 −3
8
2

 .
Find formula for image of arbitrary x ∈ R2.



T (e1) =

 5
−7

2

 and T (e2) =

 −3
8
2

 .
Find formula for image of arbitrary x ∈ R2.

Solution: Write

x =

[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1 e1 + x2 e2.

Therefore
T (x) = x1 T (e1) + x2 T (e2) = x1

 5
−7

2

+ x2

 −3
8
2


=

 5 x1 − 3 x2
−7 x1 + 8 x2

2 x1

 =

 5 −3
−7 8

2 0


︸ ︷︷ ︸

[
x1
x2

]

= A x

=
[
T (e1) T (e2)

]
x
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Standard Matrix

I Let T : Rn → Rm be linear transformation.

I Let ej ∈ Rn be 1 at jth entry and 0 elsewhere, 1 ≤ j ≤ n.

Then T (x) = A x, for all x ∈ Rn,

with Standard Matrix

A
def
=
[
T (e1) T (e2) · · · T (en)

]
∈ Rm×n.



Example: Givens Rotation in R2

T (x) = A x,

with A =

[
cosϕ −sinϕ
sinϕ cosϕ

]

T rotates x counter clock-wise by angle ϕ.



onto and one-to-one (I)
I T : Rn → Rm is onto if each b ∈ Rm is image of

at least one x ∈ Rn.

I T : Rn → Rm is one-to-one if each b ∈ Rm is image of
at most one x ∈ Rn.



onto and one-to-one (I)
I T : Rn → Rm is onto if each b ∈ Rm is image of

at least one x ∈ Rn.

I T : Rn → Rm is one-to-one if each b ∈ Rm is image of
at most one x ∈ Rn.



onto and one-to-one (II)

Proof of (b.): T is one-to-one ⇐⇒ columns of A linearly independent.

I Let T is one-to-one
?

=⇒ columns of A linearly independent.
Proof by contradiction: if columns of A are not linearly
independent, there would be a vector x 6= 0 so that A x = 0.
Thus, we would have two different vectors mapped to 0:

A x = 0, A 0 = 0, contradiction.

Hence columns of A must be linearly independent.
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independent, there would be a vector x 6= 0 so that A x = 0.
Thus, we would have two different vectors mapped to 0:

A x = 0, A 0 = 0, contradiction.

Hence columns of A must be linearly independent.
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§2.1 Matrix Operations

I Notation

I Sum and Scalar Multiple: Let

A =

[
5 2 1
−7 1 2

]
, and B =

[
1 2 3
4 5 −4

]
,

Then A + B =

[
6 4 4
−3 6 −2

]
, 2B =

[
2 4 6
8 10 −8

]
,

3A− 2B =

[
13 2 −3
−29 −7 14

]
,
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Matrix Multiplication: Motivation
Two sets of linear equations with same coefficient matrix

A x1 = b1, A x2 = b2, where

A =

 3 2 −3
1 2 3
0 1 2

 , b1 =

 2
6
3

 , b2 =

 1
−1
−1

 .
With solutions

x1 =

 1
1
1

 , x2 =

 1
−1

0

 .

Equations side-by-side[
A x1 A x2

]
=
[
b1 b2

]
, (`)

Define X =
[
x1 x2

]
and B =

[
b1 b2

]
. Rewrite (`)

AX = B, where AX = A
[
x1 x2

] def
=
[
A x1 A x2

]
.
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Matrix Multiplication (I)

In general, let A ∈ Rm×n, B ∈ Rn×p,

write B column-wise as B =
[
b1 b2 · · · bp

]
, and define

AB =
[
Ab1 Ab2 · · · Abp

]
.



Matrix Multiplication (II)

In general, let A ∈ Rm×n, B ∈ Rn×p, with notation
column j︸ ︷︷ ︸

A = (row i =⇒)

 ∗ · · · ∗ · · · ∗
ai1 · · · aij · · · ain
∗ · · · ∗ · · · ∗

 , B =


∗ b1j ∗
...

...
...

∗ bij ∗
...

...
...

∗ bnj ∗


(AB)ij = ai1 b1j + · · ·+ aij bij + · · ·+ ain bnj .

Example:
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Matrix Multiplication (III)

Theorem: Let A ∈ Rm×n, B ∈ Rn×t , B ∈ Rt×p,

Then A (B C ) = (AB) C .

Proof: Write C column-wise C =
[
c1 c2 · · · cp

]
. Then

A (B C ) = A
(
B
[
c1 c2 · · · cp

])
= A

([
B c1 B c2 · · · B cp

])
=

[
A (B c1) A (B c2) · · · A (B cp)

]

Book Def
========================

[
(AB) c1 (AB) c2 · · · (AB) cp

]
= (AB)

[
c1 c2 · · · cp

]
= (AB) C .
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Warning: AB 6= B A in general

Let A =

[
1 2
2 4

]
, B =

[
2 2
−1 −1

]
.

Then AB =

[
0 0
0 0

]
, B A =

[
6 12
−3 −6

]
.



Matrix Transpose

Transpose of matrix A is denoted AT , and formed by setting each
column in AT from corresponding row in A.

Let A =

[
1 4
2 3

]
, B =

[
2 2 1
−1 −1 0

]
.

Then AT =

[
1 2
4 3

]
, BT =

 2 −1
2 −1
1 0

 .

Theorem:
(
AT
)T

= A, (AB)T = BT AT .
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