§1.4 Matrix Equation Ax = b: Linear Combination (1)

If 4 15 en mxn mateix, with columns ay,....a,, and if x 15 in R”, then the
product of A and x, denoted by Ax, i the inear combination of the columins
of A using the corresponding entries in x as weights; that i,

A= g -]

.xl.
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Matrix-vector Product <= Linear Combination (II)

Example:
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has the same solution set & the vector equation
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Linear Equations in terms of Linear Combinations

If A'1s anm x n matrix, with columns ay,..., ,, and if 15 in ", the matrix
¢quation
Ax=bh 4

has the same solution set & the vector equation

Y0t 0d =D 0)

Thsequaton A = b a2 ohtion dly £ i oeacombmaionof e
ol of A,



Existence of Solutions

1 3 4 by
Example: Let A=| -4 2 -6 |, and b= | b
-3 -2 -7 bs

‘QUESTION: For what values of b1, by, b3 is equation Ax = b consistent?‘




Existence of Solutions

1 3 4 by
Example: Let A=| -4 2 -6 |, and b= | b
-3 -2 -7 bs

‘QUESTION: For what values of b1, by, b3 is equation Ax = b consistent?‘
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Existence of Solutions

1 3 4 by
Example: Let A=| -4 2 -6 |, and b= | b
-3 -2 -7 bs

‘QUESTION: For what values of b1, by, b3 is equation Ax = b consistent?‘

¢ —
1 3 4 | by /3) + (3 0h) = (43 |:1 3 4| b
—4 2 -6 b — 0 14 10 by +4 by
—3 -2 -7 | bs 0 7 5| b3+3b |
1 3 4| b
0 14 10 | bo+4b;
0 0 0| bs+3by—1/2(by+4by) |




Existence of Solutions

1 3 4 by
Example: Let A=| -4 2 -6 |, and b= | b
-3 -2 -7 bs

‘QUESTION: For what values of b1, by, b3 is equation Ax = b consistent?‘

¢ — (£
1 3 4 | by /3) + (3 ) — £3)|:1 3 4| b
—4 2 -6 b — 0 14 10 by +4 by
—3 -2 -7 | bs 0 7 5| b3+3b |
1 3 4| b
0 14 10 | bo+4b;
0 0 0| bs+3by—1/2(by+4by) |

ANSWER: equation Ax =b consistent <= b3 —1/2by+ b; =0. ‘
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& Foreach binR",the equation Ax = b has a soltion,
b, Eachoin R" i a inear combinaion of the columns of 4.
(. The colums of A span R

(. has apivot osiion nevery tow,
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Equivalent Statements on Existence of Solution (1)

& Foreach binR",the equation Ax = b has a soltion,
b, Eachoin R" i a inear combinaion of the columns of 4.
(. The colums of A span R

(. has apivot osiion nevery tow,

(a) <L (b) L5 (o).

Will show (a) <= (d)]




Equivalent Statements (I1): (d) < (a)

> A has pivot in each row > Ax = b has solution for each b:

row echelon
—

(A |'b) (U |4,



Equivalent Statements (I1): (d) < (a)

> A has pivot in each row > Ax = b has solution for each b:

row echelon
—

(A | b) (U | d), U has a pivot in each row.

— Ux = d has solution



Equivalent Statements (I1): (d) < (a)

> A has pivot in each row > Ax = b has solution for each b:

(A | b) rowgf;elon (U | d), U has a pivot in each row.
= Ux = d has solution

— Ax = b has solution. YES!



Equivalent Statements (I1): (d) < (a)

> A has pivot in each row > Ax = b has solution for each b:

(A | b) rowgf;elon (U | d), U has a pivot in each row.
= Ux = d has solution

— Ax = b has solution. YES!



Equivalent Statements (l11): (d) < (a)

> Ax = b has solution for each b = A has pivot in each row:

row echelon
) =" (
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Equivalent Statements (l11): (d) < (a)

> Ax = b has solution for each b = A has pivot in each row:

row echelon
— (

(A | b) U | d), Ax=Db has solution for each b.



Equivalent Statements (l11): (d) < (a)

> Ax = b has solution for each b == A has pivot in each row:

(A | b) row gl;elon (U | d), Ax = Db has solution for each b.
—> Let d be vector with all components 1.

(work row echelon backwards, CAN find corresponding b)



Equivalent Statements (l11): (d) < (a)

> Ax = b has solution for each b == A has pivot in each row:

(A | b) rowgl;elon(

U | d), Ax=Db has solution for each b.
—> Let d be vector with all components 1.
(work row echelon backwards, CAN find corresponding b)

—> Ux = d having solution implies no zero row in U



Equivalent Statements (l11): (d) < (a)

> Ax = b has solution for each b == A has pivot in each row:

row echelon
— (

(A | b) U | d), Ax=Db has solution for each b.
—> Let d be vector with all components 1.

(work row echelon backwards, CAN find corresponding b)
—> Ux = d having solution implies no zero row in U

—> A has a pivot in each row. YES!



§1.5 Solution Sets of Linear Systems:

HOMOGENEOUS SYSTEMS Ax = 0
trivial solution: x = 0; any non-zero solution x is non-trivial.
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HOMOGENEOUS SYSTEMS Ax = 0
trivial solution: x = 0; any non-zero solution x is non-trivial.

The homogeaeousequaon Ax = 0 hes & nonrvil solto 1 an oy 1 e
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—3x1—2x0+4x3 =0,
6x1+x20—8x3 =0.



§1.5 Solution Sets of Linear Systems:

HOMOGENEOUS SYSTEMS Ax = 0
trivial solution: x = 0; any non-zero solution x is non-trivial.

The homogeaeousequaon Ax = 0 hes & nonrvil solto 1 an oy 1 e
equalionhaa st one e varbl,

Example: 3x14+5x—4x3 =0,
—3x1 —2x2+4x3 =0,
6x1+x20—8x3 =0.

Augmented matrix (A | b) to row echelon form

3 5 -4 0 3 5 —4 0 35 —4
-3 =2 4 O|~10 3 O O |~(03 O
6 1 -8 0 0 -9 0 0 00 O

o



§1.5 Solution Sets of Linear Systems:

HOMOGENEOUS SYSTEMS Ax =0
trivial solution: x = 0; any non-zero solution x is non-trivial.
The homogeaeousequaon Ax = 0 hes & nonrvil solto 1 an oy 1 e
equalionhaa st one e varbl,

Example: 3x14+5x—4x3 =0,
—3x1 —2x2+4x3 =0,
6x1+x20—8x3 =0.

Augmented matrix (A | b) to row echelon form

3 5 -4 0 3 5 —4 0 35 —4
-3 =2 4 O|~10 3 O O |~(03 O
6 1 -8 0 0 -9 0 0 00 O

’X3 is free variable. ‘

o



Homogeneous Systems Example (1)

Augmented matrix in row echelon form

3 5 —4 0
03 0 0
00 O 0
x3 is free variable.
X1
Solution is X0

X3

g X3

= OWwls



Homogeneous Systems Example (1)

Augmented matrix in row echelon form

O O W

x3 is free variable.

Solution is

Set of Solutions

[ RNCVRNG )|

—4
0
0

X1
X2
X3

= span

o O O

g X3

= Owlk

N S R Owls



Homogeneous Systems Example (II)

Example 2: Augmented matrix in row echelon form
1111 0
0 0 2 4 0

Xo, X4 are free variables.

X1 1

. . X2 -1
Solution is = X + Xxg

X3 0

X4 0



Homogeneous Systems Example (II)

Example 2: Augmented matrix in row echelon form
1111 0
0 0 2 4 0

Xo, X4 are free variables.

X1 1
. . X2 -1
Solution is =X + x4
X3 0
X4 0
1 1
Set of Solutions = span -1 0
0|’ -2
0 1

In general, set of solutions to Ax = 0 is span (vi,vy, - - -
where p is number of free variables.

7vp)v



§1.5 Solution Sets of Linear Systems:

NONHOMOGENEOUS SYSTEMS Ax =b (#0)

Example 3: Augmented matrix for Ax = b:

1 11 1
0 2 4 -2

Xo, X4 are free variables.

o =

Solutionis x = + X + xa

2

0

-1

0
~—




§1.5 Solution Sets of Linear Systems:

NONHOMOGENEOUS SYSTEMS Ax =b (#0)
Example 3: Augmented matrix for Ax = b:
1111 1
0 0 2 4 -2
Xo, X4 are free variables.
2 1
o 0 -1
Solutionis x = 1 + X 0 + Xg
0 0
déf P + Vh,



FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution et of Ax = b s the set of all vectors of the form
W =P+ vy, whete v is any solution of the homogeneous equation Ax = 0,



§1.7 Linear Independence

An indexed set of vectors {vy,...,v,} in R” is said to be linearly independent
if the vector equation
XV ¥y e XV, = 0

has only the trivial solution. The set {vy,...,V,} is said to be linearly dependent
if there exist weights ¢1,.. ., ¢, not all zero, such that

v+ v+t ey, =0 @



§1.7 Linear Independence

An indexed set of vectors {vy,...,v,} in R” is said to be linearly independent
if the vector equation
XV ¥y e XV, = 0

has only the trivial solution. The set {vy,...,V,} is said to be linearly dependent
if there exist weights ¢1,.. ., ¢, not all zero, such that

v+ v+t ey, =0 @

Since  x1Vi+xp Vot FXpVp = ( Vi, V2, o, Vp )
Vectors { Vi, V2, -+, Vp } are linear independent <=
system of equations ( Vi, V2, -, Vp )x =0

does NOT have non-trivial solution.



Linear Independence: Examples (1)

1 4 2
» letvi=1| 2 |,vo=| 5 |,v3=1| 1 |. Determine if
3 6 0

they are Linearly Independent.



Linear Independence: Examples (1)

1 4 2
» letvi=1| 2 |,vo=| 5 |,v3=1| 1 |. Determine if
3 6 0

they are Linearly Independent.
SOLUTION: Form matrix and do row echelon

1 4
(Vl, Vo, V3 ‘ 0) = 2 5
36



Linear Independence: Examples (1)

1 4 2
» letvi=1| 2 |,vo=| 5 |,v3=1| 1 |. Determine if
3 6 0

they are Linearly Independent.
SOLUTION: Form matrix and do row echelon

4 2 0
5 1 0
6 0 0

(vi, v2, v3 | 0) =

OO L WN



Linear Independence: Examples (1)

1 4 2
» letvi=1| 2 |,vo=| 5 |,v3=1| 1 |. Determine if
3 6 0

they are Linearly Independent.
SOLUTION: Form matrix and do row echelon

1 4 2 0
(Vl, Vo, V3‘0): 2 51 0
360 0
1 4 2 0
~ 0 -3 -3 0
0 0 O 0
Free-variable is x3. Choose x3 = 1, solution is x = -1

so:  2v; —vp+v3=0. Linearly Dependent



Linear Independence: Examples (II)

» Determine if columns of matrix

o1 = O

1
2 —1 | are Linearly
8

Independent.



Linear Independence: Examples (II)

01 4
» Determine if columns of matrix | 1 2 —1 | are Linearly
58 0
Independent.
SOLUTION: Do row echelon for Ax = 0:
01 470 1 2 -1 0
12 -1 0 ~ 01 4 0
58 0] 0 0 0 13 0



Linear Independence: Examples (II)

01 4
» Determine if columns of matrix | 1 2 —1 | are Linearly
58 0
Independent.
SOLUTION: Do row echelon for Ax = 0:
01 470 1 2 -1 0
12 -1 0 ~ 01 4 0
58 0] 0 0 0 13 0

No free-variable. Columns of matrix Linearly Independent



Linear Independence: One vector

Let v be a vector, ¢ scalar, and

cv=0.

» If v #0, then ¢ must be 0, {v} Linearly Independent.
» If v=0, then ¢ =1, {v} Linearly Dependent.



Linear Independence: Two vectors
Let vy, vy be two vectors, ¢, ¢ scalars, and

cavi+aov =0.
If {vi,v2} linearly dependent,
» Either ¢; # 0, then
Vi = — (C2/C1) Vo

> Or ¢ # 0, then
vo =— (/o) v

v, Vo linearly dependent <= one is multiple of the other.




Linear Independence: Two vectors
Let vy, vy be two vectors, ¢, ¢ scalars, and

cavi+aov =0.
If {vi,v2} linearly dependent,
» Either ¢; # 0, then
Vi = — (C2/C1) Vo

> Or ¢ # 0, then
vo =— (/o) v

v, Vo linearly dependent <= one is multiple of the other.

s, 23
3. 1>

Linearly dependent

3. 23 6. 2o _

Linearly independent



Linear Independence: At least Two vectors (I)

Let S = {vi,v2, - ,vp} be a set of p > 2 vectors.

» S is linearly dependent <= one vector in S is linear
combination of others.



Linear Independence: At least Two vectors (I)

Let S = {vi,v2, - ,vp} be a set of p > 2 vectors.
» S is linearly dependent <= one vector in S is linear
combination of others.

» If S is linearly dependent and v; # 0, then some v; is linear
combination of vy, -+ ,v;_j.



Linear Independence: At least Two vectors (I)

Let S = {vi,v2, - ,vp} be a set of p > 2 vectors.

» S is linearly dependent <= one vector in S is linear
combination of others.

» If S is linearly dependent and v; # 0, then some v; is linear

combination of vy, -+ ,v;_j.
1 4 2
Example: Letvi=| 2 |,vo=| 5 J,vs=1| 1
3 6 0

Then: 2vy —vs +v3 =0. Linearly dependent



Linear Independence: At least Two vectors (I)

Let S = {vi,v2, - ,vp} be a set of p > 2 vectors.

» S is linearly dependent <= one vector in S is linear
combination of others.

» If S is linearly dependent and v; # 0, then some v; is linear

combination of vy, -+ ,v;_j.
1 4 2
Example: Letvi=| 2 |,vo=| 5 J,vs=1| 1
3 6 0

Then: 2vy —vs +v3 =0. Linearly dependent

Therefore: vz = —2v; + vy, forj=3.



Linear Independence: At least Two vectors (II)

Let S = {vi,va, - ,vp} be a set of p > 2 vectors.

» Theorem: If S is linearly dependent and v; # 0, then some
v; is linear combination of v, -+ ,v;_1.



Linear Independence: At least Two vectors (II)

Let S = {vi,va, - ,vp} be a set of p > 2 vectors.

» Theorem: If S is linearly dependent and v; # 0, then some
v; is linear combination of v, -+ ,v;_1.

Proof: Let
C1V1+C2V2—|—---+vap:0, (E)

with some of c1, ¢, -+, ¢, # 0.



Linear Independence: At least Two vectors (II)

Let S = {vi,va, - ,vp} be a set of p > 2 vectors.

» Theorem: If S is linearly dependent and v; # 0, then some
v; is linear combination of v, -+ ,v;_1.

Proof: Let

C1V1+C2V2+"'+vap=0, (ﬁ)

with some of c1, ¢, -+, ¢, # 0.
Let j be the largest subscript for which ¢; # 0. If j = 1, then (¢)
becomes

Cl1Vy = 0,

which is impossible because v; # 0.



Linear Independence: At least Two vectors (II)

Let S = {vi,va, - ,vp} be a set of p > 2 vectors.

» Theorem: If S is linearly dependent and v; # 0, then some
v; is linear combination of v, -+ ,v;_1.

Proof: Let

C1V1+C2V2+"'+vap=0, (E)

with some of c1, ¢, -+, ¢, # 0.
Let j be the largest subscript for which ¢; # 0. If j = 1, then (¢)
becomes

Cl1Vy = 0,

which is impossible because v; # 0.
So j > 1, and (¢) becomes

vi=—(a/qg) vi—(e/g)va+ - +(g-1/g)vj-1. QED



Linear Independence (I11)

Let S = {vi,vo, - ,vp} be a set of vectors.

» Theorem: If S contains the 0 vector, then § is linearly
dependent.



Linear Independence (I11)

Let S = {vi,vo, - ,vp} be a set of vectors.

» Theorem: If S contains the 0 vector, then § is linearly
dependent.

Proof: Let vj = 0 for some index j, then

0><V1—|—~"+0><Vj,1+1XVj+0XVj+1+OXVp:0.



Linear Independence (1V)

Let S = {vi,v2, -+ ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+ ,v, contains n components
each with n < p, then S is linearly dependent.



Linear Independence (1V)

Let S = {vi,v2, -+ ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+ ,v, contains n components
each with n < p, then S is linearly dependent.

Proof: Let A= (vq,v2,---,Vp). Then Ais an n x p matrix, with
more columns than rows.



Linear Independence (1V)

Let S = {vi,v2, -+ ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+ ,v, contains n components
each with n < p, then S is linearly dependent.

Proof: Let A= (vq,v2,---,Vp). Then Ais an n x p matrix, with
more columns than rows.

Thus the row echelon form for the augmented matrix (A | 0)
must have free variable columns.



Linear Independence (1V)

Let S = {vi,v2, -+ ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+ ,v, contains n components
each with n < p, then S is linearly dependent.

Proof: Let A= (vq,v2,---,Vp). Then Ais an n x p matrix, with
more columns than rows.

Thus the row echelon form for the augmented matrix (A | 0)
must have free variable columns.

Therefore Ax = 0 must have a non-trivial solution, and columns of
A linearly dependent. QED



Linear Independence (V)

Let S = {vi,v2,--- ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+, v, contains n components
each with n < p, then S is linearly dependent.



Linear Independence (V)

Let S = {vi,v2,--- ,v,} be a set of p vectors.

» Theorem: If vectors vy, v, -+, v, contains n components
each with n < p, then S is linearly dependent.

Example: vectors 0 , 2 , ) are linearly dependent
1 1 an

for any ag, .



Introduction to Linear Transformations: Example

GivenA:[4 31

5 05 1 ] linear transform is a function:

‘A (4_component_vector) = (2_component_vector) . ‘




Introduction to Linear Transformations: Example

GivenA:[4 31

5 05 1 ] linear transform is a function:

‘A (4_component_vector) = (2_component_vector) . ‘

l
l
l
l
s

A r b 4 I 0



Introduction to Linear Transformations: Example

GivenA:[4 31

5 05 1 ] linear transform is a function:

‘A (4_component_vector) = (2_component_vector) . ‘

l
l
l
l
|
A x b 4 0

multiplication

x by A b
- -
o multiplication
-
by A
u_ /"’_\.o
r* 2

FIGURE 1 Transforming vectors via matrix
multiplication.



Linear Transformations

N
\.\ \ /

WE STUDY LINEAR
TRANSFORMATIONS IN
AN EFFORT TO BETTER
UNDERSTAND THE CONCEPT
OF IMAGE, USING MORE
VISUAL MEANS THAN SIMPLE
FORMULAE.




MATRIX Transformation: Definition
Given matrix A € R™*" matrix transform is function from R" to R™:

Foreach x € R", T (x) % Ax (e R™).



MATRIX Transformation: Definition
Given matrix A € R™*" matrix transform is function from R" to R™:

Foreach x € R", T (x) % Ax (e R™).

» For each x, vector T (x) is called image of x.
» The set of all images T (x) is called range of T.



MATRIX Transformation: Definition
Given matrix A € R™*" matrix transform is function from R" to R™:

Foreach x € R", T (x) % Ax (e R™).

» For each x, vector T (x) is called image of x.
» The set of all images T (x) is called range of T.

1 -3
Ex: Let A= 3 5 |. Def matrix transformation T : RZ — R3:
-1 7
1 -3 N 1 -3 X1 — 3x
T(x)=Ax= 3 5 [Xl}:xl 3 | 4+x 51 =] 3x1+5x
-1 7 2 ~1 7 —x1 4 7%
| ——

image



MATRIX Transformation: Definition
Given matrix A € R™*" matrix transform is function from R" to R™:

Foreach x € R", T (x) % Ax (e R™).

» For each x, vector T (x) is called image of x.
» The set of all images T (x) is called range of T.
1 -3

Ex: Let A= 3 5 |. Def matrix transformation T : RZ — R3:
-1 7
1 -3 N 1 -3 X1 — 3x
T(x)=Ax= 3 5 [Xl}:xl 3 | 4+x 51 =] 3x1+5x
-1 7 2 -1 7 ] —x1+ 7%
| ——
1 3 image
range of T = span 31, 5




MATRIX Transformation: Example

1 =3
Let A= 3 5 |. Def matrix transformation T : R2 — R3:
-1 7
[ 1 -3 N x1 — 3x
T(x)=Ax=| 3 5 [Xl ] =| 3x +5x
L -1 7 2 —x1 4+ 7 X

> Foru:[2

1 ] find image T (u).



MATRIX Transformation: Example

1 -3
Let A= 3 5 |. Def matrix transformation T : R? — R3:
-1 7

[ 1 -3 N x1 — 3x

T(x)=Ax= 5 [Xl]_ 3x1 +5x
L -1 7 2 —x1 4+ 7 X

2 C
» Foru= [ 1 ] find image T (u).

SOLUTION:

T(u) = Au= B [_ﬂ: 1



MATRIX Transformation: Example

1 -3 N x1 — 3x
T(x)=Ax=| 3 5 [Xl]: 3x1 4+ 5%
-1 7 2 —x1+ 7xo
3
» Find x € R? whose image under T is b = 2
-5

> |s there more than one x whose image under T is b?



MATRIX Transformation: Example

1 -3 N x1 — 3x
T(x)=Ax=| 3 5 [Xl]: 3x1 4+ 5%
-1 7 2 —x1+ 7xo
3
» Find x € R? whose image under T is b = 2
-5

> |s there more than one x whose image under T is b?
SOLUTION: T (x) =b <= Ax=b. Row echelon on (A | b):

1 -3 3 1 -3 3
3 5 2| ~]10 1 —-0.5
-1 7 -5 0 O 0

1.5 } .
1S UNIQUE.

pre-image X — |: 05



MATRIX Transformation: Example

1 -3 N x1 — 3x
T(x)=Ax=| 3 5 [Xl]: 3x1 4+ 5%
-1 7 2 —x1 4+ 7 xo
3
» Determine if c= | 2 | isin the range of T.

5



MATRIX Transformation: Example

1 -3 N x1 — 3x
T(x)=Ax=| 3 5 [Xl]: 3x1 4+ 5%
-1 7 2 —x1 4+ 7 xo
3
» Determine if c= | 2 | isin the range of T.

5
SOLUTION: c is in the range of T <= c is image of some
x € R?. Let Ax = c. Row echelon on (A | c):

1 -3 3 1 -3 3
3 5 2| ~10 1 2
-1 7 5 0 O -35

Equations have no solution, ¢ is NOT in the range of T.



LINEAR Transformation: Definition

Given matrix A € R™*"  a transformation is a function from

R" (=domain) to R™ ( = codomain)

A transfommation (or mapping) T is linear f;

(1) T( ut¥)=T()+T(v) forallu,vinthe domainof T;
T(cu) = cT(u) forall sealers ¢ and all u in the domain of T,



LINEAR Transformation: Definition

Given matrix A € R™*"  a transformation is a function from

R" (=domain) to R™ ( = codomain)

A transfommation (or mapping) T is linear f;

(1) T( ut¥)=T()+T(v) forallu,vinthe domainof T;
T(cu) = cT(u) forall sealers ¢ and all u in the domain of T,

» Matrix Transformation is linear transformation.

> ...



What Transformation is NOT Linear




LINEAR Transformation: Simple Facts
A transfommation (or mapping) T is linear f;

() Tu+¥)=T(w)+T(v) forallu,vinthedomainofT;
(i) T(cu) = cT(u) forall sealers ¢ and all  in the domain of T,



LINEAR Transformation: Simple Facts
A transfommation (or mapping) T is linear f;
() Tu+¥)=T(w)+T(v) forallu,vinthedomainofT;
(i) T(cu) = cT(u) forall sealers ¢ and all  in the domain of T,

» Take ¢ =0 in (ii)
T(0)=0.



LINEAR Transformation: Simple Facts
A transfommation (or mapping) T is linear f;

[) T( u+¥)=T()+T(v) forallu,vinthe domainof T;
T(cu) = cT(u) forallscalers ¢ and all  in the domain of T,

» Take ¢ =0 in (ii)
T(0)=0.

> (i) + (i)
T(cu+dv) = T (cu)+ T (dv)
= cT(u+dT(v) (9



LINEAR Transformation: Simple Facts
A transfommation (or mapping) T is linear f;

[) T( u+¥)=T()+T(v) forallu,vinthe domainof T;
T(cu) = cT(u) forallscalers ¢ and all  in the domain of T,

» Take ¢ =0 in (ii)
T(0)=0.

> (i) + (i)
T(cu+dv) = T (cu)+ T (dv)

= cT(u+dT(v) (9
» Repeat on (¢)

T(c1u1 + cuy + -+ cpup) =cT (U1)+C2T(U2)+‘ :

+cp T (up)



Example Linear Transformation T : R?> — R?

o [5 3][2]- [

Find the images under T of u = [ ‘11 ] V= [ :2)) ] and

vev=[2]



Example Linear Transformation T : R?> — R?
T(x):Ax:H —é][z]:[;@

Find the images under T of u = [ 4 ] V= [ 2 ] and

1 3

u+t+v= [ 2 ] . SOLUTION: T is a flip-reflection

T(U)Z{_i},T(v):[_3]77(u+v):[

.T(u +¥)

nwy=

—4
6

E



§1.9 The Matrix of a Linear Transformation

Motivating example: Define e1, e> below.

BN

== [7]
| ~

= - [&]

Let linear transformation T : R?> — R3 satisfy

5 -3
T(el) = —7 and T(GQ) = 8
2 2

Find formula for image of arbitrary x € R?.



5 -3
T(el) = |: —7 ] and T(EQ) = |: 8 ] .
2 2

Find formula for image of arbitrary x € R?.



5 -3
T(el) = —7 and T(eg) = 8
2 2

Find formula for image of arbitrary x € R?.
SOLUTION: Write

X = X = X1 1 + X2 0 = X1 €1 + xo eo.
X 0 1



5 -3
T(el) = |: —7 ] and T(eg) = |: 8 ] .
2 2

Find formula for image of arbitrary x € R?.
SOLUTION: Write

1 -
X = X = X1 + X2 0 = X1 €1 + xo eo.
X 0 1

Therefore 5 -3
T(x) = xiT(e1))+xxT(e2)=x | -7 | +x 8

| 2 2
5x1 —3x 5 -3 N
= —7x1+8x | = | —7 8 |:X1 :|
2 xq 2 0 2
—_———
= A X

= [ T(e1) T(e2) |x



Standard Matrix

> Let T:R"™ — R™ be linear transformation.
» Lete; € R" bel at jth entry and 0 elsewhere, 1 < j < n.

‘Then T(x)=Ax, forall xeR",

with Standard Matrix

A [ T(er) T(e) -~ Tl(en) ] eR™"



Example: Givens Rotation in R?

with A= [ oSy —siny ]
sinp  cosy

T rotates x counter clock-wise by angle ¢.



onto and one-to-one ()

» T:R"— R™is onto if each b € R™ is image of
at least one x € R".

g T / i T b
Uofﬂ - @ Vo‘ﬂ )
&
¢ R

b

/

Tisnot onto R” Tisonto R™



onto and one-to-one ()

» T:R"— R™is onto if each b € R™ is image of
at least one x € R".

g T / i T b
- ﬂ Vo‘ﬂ )
&
i ﬂ» r‘!‘h,
/

Tisnot onto R” Tisonto R™

» T:R"— R™is one-to-one if each b € R™ is image of
at most one x € R".

| 0
ol T@ pﬂ“‘ﬂa_’ri—%k‘/
'—P—‘—

Tis not one-to-one Tis one-to-one




onto and one-to-one (II)

Let T : R" = R™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R" onto R" if and only if the coluomns of 4 span R,
b. T is one-to-one if and only if the columns of A are linearly independent.



onto and one-to-one (II)

Let T : R" = R™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R" onto R" if and only if the coluomns of 4 span R,
b. T is one-to-one if and only if the columns of A are linearly independent.

PROOF of (b.): T is one-to-one <= columns of A linearly independent.

. ? . .
> Let T is one-to-one = columns of A linearly independent.



onto and one-to-one (II)

Let T : R" = R™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R" onto R" if and only if the coluomns of 4 span R,
b. T is one-to-one if and only if the columns of A are linearly independent.

PROOF of (b.): T is one-to-one <= columns of A linearly independent.

> Let T is one-to-one == columns of A linearly independent.
Proof by contradiction: if columns of A are NOT linearly
independent, there would be a vector x # 0 so that Ax = 0.
Thus, we would have two different vectors mapped to 0:

Ax=0, A0=0, contradiction.

Hence columns of A must be linearly independent.



PROOF of (b.): T is one-to-one <= columns of A linearly independent.

. . ? .
> Let columns of A linearly independent = T is one-to-one.



PROOF of (b.): T is one-to-one <= columns of A linearly independent.

> Let columns of A linearly independent L T is one-to-one.
Proof by contradiction: if T is NOT one-to-one, there would
be two vectors u # v so that Au = Av. Thus, we would have
a vector u — v # 0 so that

A(u—v)=0, contradiction.

Hence T must be one-to-one.



§2.1 Matrix Operations

» Notation

Column
7
<11 T <1y T Ain
Row i an .. a;j ... Qin
A FR Ay j PR Apon
T T T

a,; a; a,



§2.1 Matrix Operations

> Notation
Column
7
a1 R aij a1 n
Row i an .. a;j Qin = A

Am1 T Arnj Amn

T T T

a, a; a,

» Sum and Scalar Multiple: Let

5 21 1 2 3
A—[_7 1 2}, and B_[4 5 _4],

6 4 4 2 4 6
Then A+B—[_3 . _2}, 23_[8 0 _8},

9

13 2 -3
3%\_213_[—29 —7 14}



§2.1 Matrix Operations

» Notation

J
an o iy o Qin
Row i a; a;j ain = A
Am1 T Amj Am
T T U
a a; a

» Sum and Scalar Multiple:
Let A, B and C be matrices of the same size, and et r and s be scalars,

L A+B=B+4 d rd+8)=r+1B
b (A+B)4C=A4(B+C) e (r45)A=rd+sd
¢ 440=4 £ r(sd) = (rs)A



Matrix Multiplication: MOTIVATION
Two sets of linear equations with same coefficient matrix

Ax; =b;, Axpy=by, where

3 2 -3 2 1
A=1|1 2 31, by=1]6], by=| —1
01 2 3 -1
With solutions
1 1
X1 = 1 y Xo = -1



Matrix Multiplication: MOTIVATION
Two sets of linear equations with same coefficient matrix

Ax; =b;, Axpy=by, where

3 2 -3 2 1
A=1|1 2 31, by=1]6], by=| —1
01 2 3 -1
With solutions
1 1
X1 = 1 , X2 = -1
1 0

Equations side-by-side
[ Axy Axz | =[b1 by |, ()



Matrix Multiplication: MOTIVATION
Two sets of linear equations with same coefficient matrix

Ax; =b;, Axpy=by, where

3 2 -3 2 1
A=1|1 2 31, by=1]6], by=| —1
01 2 3 -1
With solutions
1 1
X1 = 1 y Xo = -1
1 0

Equations side-by-side
[Axl AX2]:[b1 bz], (f)
Define X =[ x; x | and B=[ by by |. Rewrite (¢)

AX=B, where AX=A[x1 % |%[Ax Ax].



Matrix Multiplication (1)

In general, let A e R™MN B e R"*P,

write B column-wise as B = [ by by --- b, ] , and define

AB=[ Ab; Ab, --- Ab, ].



Matrix Multiplication (II)

In general, let Ac R™" B e R"P,  with notation

column j

~———

* b]_j *
*k ... k oo % .

A = (I’OW i:>) aj1 -+ aj -+ ain s B = * b,‘j *
*k PR k e % :

* bpj *

(AB); = ain byj+ -+ aj bj+ -+ ain bn;.




Matrix Multiplication (II)

In general, let Ac R™" B e R"P,  with notation

column j

~———
* b]_j *

* * * . . .
A = (I’OW i:>) aj1 -+ aj -+ ain s B = * b,‘j *
*k PR k e % . . .
* bpj *

(AB); = ain byj+ -+ aj bj+ -+ ain bn;.

Example:
b
| -]

!

VAo g oo
B 3Hu 1 [ Hu u u}




Matrix Multiplication (II)

In general, let Ac R™" B e R"P,  with notation

* PR * . *
A = (I’OW i:>) aji1 -+ aj -+ ain y B =
* PR * P *

(AB); = ain byj+ -+ ajbj+ -+ ain bn;.

Example:

column j
————

_>I< b]_j *_




Matrix Multiplication (1)

Theorem: Let Ac R™" BeR"™! Be RXP,
Then A (BC)=(AB)C.

PRrROOF: Write C column-wise C = [ €1 C - Cp } Then
A(BC) = AB[ec1 ¢ -+ ¢ ])
= A([ Bes Bex --- Bgp )

]
= [ A(Be1) A(Be) --- A(Bgp) |



Matrix Multiplication (1)

Theorem: Let Ac R™" BeR"™! Be RXP,
Then A (BC)=(AB)C.

PRrROOF: Write C column-wise C = [ €1 C - Cp } Then
A(BC) = AB[ec1 ¢ -+ ¢ ])
= A([ Bes Bex --- Bgp )
= [ A(Bc1) A(Bex) -+ A(Becp) |
Book Def

[ (AB)er (AB)c2 -+ (AB)cp |



Matrix Multiplication (1)

Theorem: Let Ac R™" BeR"™! Be RXP,
Then A (BC)=(AB)C.

PROOF: WriteCcqumn—wiseC:[Cl c - Cp]-Then
ABC) =  AB[a @ - ¢
— A([ Bes Bex --- Bgp )
= [ A(Be1) A(Be) --- A(Bgp) |
Book Def [ (AB) &) (AB) - (AB) ¢, |
— (AB (of] cp]

[
-  (AB)C.



WARNING: AB # B A in general

1 2 2 2
wn=[12] 82 2 2],

0 0 6 12
ThenAB_[O 0], BA_[_3 _6].



Matrix Transpose

Transpose of matrix A is denoted AT, and formed by setting each
column in AT from corresponding row in A.

1 4 2 2 1]
was[14] 6o 2 22,

2 -1

ThenAT:[i ﬂ BT =12 -1
1 0




Matrix Transpose

Transpose of matrix A is denoted AT, and formed by setting each
column in AT from corresponding row in A.

A - R

2 3 -1 -1 0|
2 1]

ThenAT:[i ﬂ BT =12 -1
1 0

-
Theorem: (AT) — A (AB)T =BT AT



