Self Introduction

- Name: Ming Gu
- \triangleright Office: 861 Evans
- \triangleright **Email:** mgu@berkeley.edu
- \triangleright Office Hours: MTuWF 4:15-5:30PM
- **Class Website:**
	- math.berkeley.edu/∼mgu/MA54Spring2019

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Lecture notes available on bCourses

Text Book

- \triangleright UC Berkeley Edition, Linear Algebra and Applications, required.
- \triangleright Closely follow Math Dept outlines for Math 54.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Students responsible for material left out in lectures.

K ロ X (日) X (日)

Class Work

- \triangleright Weekly home work sets; Count best 10, total 15 points.
- \triangleright Weekly Quizzes (except on midterm weeks); Count best 10, total 15 points.
- \blacktriangleright Two midterm exams: the worse is 15 points, the better 25 points.

KORK ERKER ADE YOUR

 \blacktriangleright 1 final exam, 30 points.

Class Work

- \triangleright Weekly home work sets; Count best 10, total 15 points.
- \triangleright Weekly Quizzes (except on midterm weeks); Count best 10, total 15 points.
- \blacktriangleright Two midterm exams: the worse is 15 points, the better 25 points.
- \blacktriangleright 1 final exam, 30 points.
- \triangleright If you miss one midterm, your other midterm and the final will be worth 30 and 40 points, respectively.

KORK ERKER ADE YOUR

Exam Schedule

- Midterm I: Feb. 20 (Wed.) in class
- Midterm II: Mar. 20 (Wed.) in class
- \blacktriangleright Final Exam: Tue., May 14, 7:00-10:00pm

Grade Scale

- \triangleright **A** to **A**+: at least 85 points;
- \triangleright B- to B+: between 70 and 85 points;
- \triangleright **C** to C +: between 60 and 70 points;
- \triangleright **D**: between 55 and 60 points;
- \blacktriangleright F: less than 55 points.

No grade curve; most people get A level or B level grades.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

I took Algebra in High School

What are you studying? Algebra. Oh... I took that in high school. **The** $\widetilde{\widetilde{\mathbb{G}}}$ 20090 イロン イ部ン イ君ン イ君ン

Ε

§1.1 Systems of Linear Equations

linear equation is of form

$$
a_1x_1 + a_2x_2 + \cdots + a_nx_n = b, \quad \text{where}
$$

- \triangleright a₁, a₂, \cdots , a_n are COEFFICIENTS;
- \blacktriangleright x_1, x_2, \cdots, x_n are VARIABLES;
- \triangleright b is RIGHT HAND SIDE.

Linear equation example:

$$
4x_1 - 5x_2 + 3x_3 = 2.
$$

System of linear equations example:

$$
4x1 - 5x2 + 3x3 = 2,\n2x2 - x3 = 1,\n-3x1 + 8x3 = 5.
$$

Linear Algebra is 2000 years old (1)

250 AD, 9 Chapters of the Mathematical Art

The *only* treatment of linear eqns. and Gaussian elimination in antiquity.

Liu Hui said Nine Chapters were already old (\approx 100 BC ?) when he wrote about them in 250 AD.

Linear Algebra is 2000 years old (II)

Chapter 8 of the Nine Chapters

Problem 1 (of 18 similar problems)

For 3 sheaves of rice from top-grade rice paddies, and 2 sheaves from medium-grade paddies, and 1 sheaf from low-grade paddies, the combined vield is 39 dou of grain.

And so on for two more collections of paddies.

For each grade, 1 sheaf yields how much rice?

Counting Table Setup

Linear Algebra is 2000 years old (III): One dou of grain

Linear Algebra is 2000 years old (IV)

Chapter 8 of the Nine Chapters

Solution

R. Hart, The Chinese Roots of Linear Algebra, Johns-Hopkins University Press, 2011.

Reviewed by J. F. Grcar, Bull, Amer. Math. Soc. 49 (2012). 585-590.

Linear Algebra is 2000 years old, but named after Gauss

Successful Calculations Have 4 Ingredients

- 1. Impact for society
- 2. Mathematical formulation
- 3. Technology for computing
- 4. Algorithm appropriate to #3

Linear equations, exactly one solution

System of two linear equations:

$$
x_1 - 2x_2 = -1, \quad (\ell_1)
$$

-x_1 + 3x_2 = 3. \quad (\ell_2)

FIGURE 1 Exactly one solution.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Linear equations, no solution or too many solutions

(a)
$$
x_1 - 2x_2 = -1
$$

\t $-x_1 + 2x_2 = 3$
(b) $x_1 - 2x_2 = -1$
\t $-x_1 + 2x_2 = 1$

 2990

K ロンス 御 > ス 할 > ス 할 > 이 할

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Linear equations, solution in 3D

System of linear equations:

\n
$$
x_1 - 2x_2 + x_3 = 0,
$$
\n
$$
x_2 - 8x_3 = 8,
$$
\n
$$
5x_1 - 5x_3 = 10.
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Solution $x_1 = 1$, $x_2 = 0$, $x_3 = -1$.

Linear equations, solution in 3D

System of linear equations:
$$
x_1 - 2x_2 + x_3 = 0
$$
,
\n $x_2 - 8x_3 = 8$,
\n $5x_1 - 5x_3 = 10$.

Solution $x_1 = 1$, $x_2 = 0$, $x_3 = -1$.

Matrix Notation

System of linear equations: $x_1 - 2x_2 + x_3 = 0$, $x_2 - 8x_3 = 8$ $5 x_1 - 5 x_3 = 10$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Matrix Notation

System of linear equations: x¹ − 2 x² + x³ = 0, x² − 8 x³ = 8, ^I 5 x¹ − 5 x³ = 10. coefficient matrix 1 −2 1 A = 0 1 −8 5 0 −5 ^I right hand side (RHS) 0 b = 8 10 ^I augmented matrix 1 −2 1 0 A = 0 1 −8 8 ⁼ A b 5 0 −5 10

Nine Chapters Problem

System of linear equations: $x_1 + 2x_2 + 3x_3 = 26$, (ℓ_1) $2 x_1 + 3 x_2 + x_3 = 34, (\ell_2)$ $3x_1 + 2x_2 + x_3 = 39.$ (ℓ_3)

KORKA SERKER ORA

 x_1 = top−grade, x_2 = mid−grade, x_3 = low−grade.

Nine Chapters Problem

- System of linear equations: $x_1 + 2x_2 + 3x_3 = 26$, (ℓ_1) $2 x_1 + 3 x_2 + x_3 = 34, (\ell_2)$ $3x_1 + 2x_2 + x_3 = 39.$ (ℓ_3)
- x_1 = top−grade, x_2 = mid−grade, x_3 = low−grade.
	- \blacktriangleright coefficient matrix

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}
$$

\n• right hand side (RHS)

$$
b = \left(\begin{array}{c} 26 \\ 34 \\ 39 \end{array}\right)
$$

 \blacktriangleright augmented matrix

$$
\mathcal{A} = \left(\begin{array}{ccc|ccc} 1 & 2 & 3 & 26 \\ 2 & 3 & 1 & 34 \\ 3 & 2 & 1 & 39 \end{array} \right) = \left(\begin{array}{ccc|ccc} A & & b \end{array} \right)
$$

Gaussian Elimination (I)

$$
\blacktriangleright 3 \times (\ell_1) - 1 \times (\ell_3) \rightarrow \text{new } (\ell_1), \ \ 3 \times (\ell_2) - 2 \times (\ell_3) \rightarrow \text{new } (\ell_2)
$$

System of linear equations: $4x_2 + 8x_3 = 39$, (ℓ_1) $5 x_2 + x_3 = 24, (\ell_2)$ $3x_1 + 2x_2 + x_3 = 39.$ (ℓ_3)

 \blacktriangleright augmented matrix

$$
\mathcal{A} = \left(\begin{array}{ccc|ccc} 0 & 4 & 8 & 39 \\ 0 & 5 & 1 & 24 \\ 3 & 2 & 1 & 39 \end{array}\right)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Gaussian Elimination (II)

$$
\blacktriangleright 5 \times (\ell_1) - 4 \times (\ell_2) \rightarrow \text{new} \ (\ell_1)
$$

System of linear equations:

\n
$$
36 x_3 = 99, \quad (\ell_1)
$$
\n
$$
5 x_2 + x_3 = 24, \quad (\ell_2)
$$
\n
$$
3 x_1 + 2 x_2 + x_3 = 39. \quad (\ell_3)
$$

 \blacktriangleright augmented matrix

$$
\mathcal{A} = \left(\begin{array}{ccc|ccc} 0 & 0 & 36 & 99 \\ 0 & 5 & 1 & 24 \\ 3 & 2 & 1 & 39 \end{array} \right)
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Solution

$$
x_3=\frac{11}{4},\quad x_2=\frac{17}{4},\quad x_1=\frac{37}{4}.
$$

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another row. 2

- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

ELEMENTARY ROW OPERATIONS

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row. 2
- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

\blacktriangleright Example: Row interchange

System of linear equations:	$36 x_3 = 99$,	(ℓ_1)
$5 x_2 + x_3 = 24$,	(ℓ_2)	
$3 x_1 + 2 x_2 + x_3 = 39$.	(ℓ_3)	
New System:	$3 x_1 + 2 x_2 + x_3 = 39$,	(ℓ_1)
$5 x_2 + x_3 = 24$,	(ℓ_2)	
$36 x_3 = 99$,	(ℓ_3)	

 2990

∍

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

KID KA KERKER E VOOR

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

- 1. Is the system consistent; that is, does at least one solution *exist*?
- 2. If a solution exists, is it the *only* one; that is, is the solution *unique*?

→ 御 > → 君 > → 君 > Þ $2Q$

Inconsistent Equations

System of linear equations: $x + 2y + z = 3$, (ℓ_1) $3x - 2y - 4z = 4$, (ℓ_2) $-2x - 4y - 2z = 5.$ (ℓ_3)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Inconsistent Equations

System of linear equations:

\n
$$
x + 2y + z = 3, \quad (l_1)
$$
\n
$$
3x - 2y - 4z = 4, \quad (l_2)
$$
\n
$$
-2x - 4y - 2z = 5. \quad (l_3)
$$

 \blacktriangleright augmented matrix

$$
\mathcal{A} = \left(\begin{array}{rrr} 1 & 2 & 1 & 3 \\ 3 & -2 & -4 & 4 \\ -2 & -4 & -2 & 5 \end{array} \right) = (A | b)
$$

$$
\begin{array}{l} \text{\textbf{b}} \ 1 \times (\ell_2) - 3 \times (\ell_1) \to \text{\textbf{new}} \ (\ell_2), \\ 1 \times (\ell_3) - (-2) \times (\ell_3) \to \text{\textbf{new}} \ (\ell_3). \end{array}
$$

 \blacktriangleright new augmented matrix

$$
\mathcal{A} = \left(\begin{array}{ccc|ccc} 1 & 2 & 1 & 3 \\ 0 & -8 & -7 & -5 \\ 0 & 0 & 0 & 11 \end{array} \right)
$$

§1.2 Row Reduction and Echelon Form (I)

In Augmented matrix, the row echelon form (REF)

$$
\mathcal{A} = \left(\begin{array}{c|c} A & b \end{array} \right)
$$

where $\blacksquare \neq 0$, $* =$ any entry. REF allows \blacksquare variables to be easily solved.

§1.2 Row Reduction and Echelon Form (II)

In rectangular matrix, a leading entry of a row is the leftmost non-zero.

For augmented matrix in row echelon form

variables with leading entry \blacksquare can be solved in terms of the other variables.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

§1.2 Row Reduction and Echelon Form (III)

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

§1.2 Row Reduction and Echelon Form (IV)

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

 Ω

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and pivoting column is a column that contains a pivot position.

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and pivoting column is a column that contains a pivot position.

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and pivoting column is a column that contains a pivot position.

Row Reduction Algorithm (II)

$$
A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Row Reduction Algorithm (III)

Interchange rows 1 and 3 to reach pivot position.

Row Reduction Algorithm (IV)

$$
\begin{aligned}\n\mathbf{row}_2 - (-1) \times \mathbf{row}_1 &\to \mathbf{row}_2, \\
\mathbf{row}_3 - (-2) \times \mathbf{row}_1 &\to \mathbf{row}_3\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

no row interchange needed

Row Reduction Algorithm (V)

$$
\begin{aligned}\n\mathbf{row}_3 - \left(\frac{5}{2}\right) \times \mathbf{row}_2 &\to \mathbf{row}_3, \\
\mathbf{row}_4 - \left(\frac{-3}{2}\right) \times \mathbf{row}_2 &\to \mathbf{row}_4\n\end{aligned}
$$

$$
\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

interchange row₃ and row₄

Row Reduction Algorithm (VI)

メロメ メ都 メメ きょくきょう 目 QQ

Solution of Linear Equations

Solution: with x_3 free,

$$
x_4=0,\; x_2=-3-2\,x_3,\; x_1=5+3\,x_3.
$$

.
◆ (日本) → (국) → 국) → 국 → インス(2)

 x_1, x_2, x_4 : basic variables; x_3 : free variabl[e.](#page-41-0)

- **Existence:** A linear system is consistent \iff rightmost column in $(A \mid b)$ is *not* pivot column.
- \triangleright Uniqueness: A consistent linear system contains
	- \triangleright either: *unique* solution but no free variable,
	- \triangleright or: infinitely many solutions with at least one free variable.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

§1.3 Vector Equations

Vectors in \mathcal{R}^2

$$
\mathbf{u}_1 = \left(\begin{array}{c} 2 \\ 1 \end{array}\right), \ \mathbf{u}_2 = \left(\begin{array}{c} 3 \\ 1 \end{array}\right), \ \mathbf{u}_3 = \left(\begin{array}{c} 2 \\ 1 \end{array}\right), \ \mathbf{u}_4 = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right).
$$

Then

$$
\textbf{u}_1+\textbf{u}_2=\left(\begin{array}{c}5 \\ 2 \end{array}\right), \; \textbf{u}_3=\textbf{u}_1, \; 2 \, \textbf{u}_4=\left(\begin{array}{c}2 \, \mu_1 \\ 2 \, \mu_2 \end{array}\right).
$$

イロト イ御 トイミト イミト ニミー りんぴ

§1.3 Vector Equations

Vectors in \mathcal{R}^2

$$
\mathbf{u}_1 = \left(\begin{array}{c} 2 \\ 1 \end{array}\right), \ \mathbf{u}_2 = \left(\begin{array}{c} 3 \\ 1 \end{array}\right), \ \mathbf{u}_3 = \left(\begin{array}{c} 2 \\ 1 \end{array}\right), \ \mathbf{u}_4 = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right).
$$

Then

$$
\textbf{u}_1+\textbf{u}_2=\left(\begin{array}{c}5 \\ 2 \end{array}\right), \; \textbf{u}_3=\textbf{u}_1, \; 2\,\textbf{u}_4=\left(\begin{array}{c}2\,\mu_1 \\ 2\,\mu_2 \end{array}\right).
$$

Vectors in
$$
\mathbb{R}^3
$$
:
\n**a** = $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$,
\nVectors in \mathbb{R}^n :
\n**w** = $\begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{pmatrix}$.

イロト イ御 トイミト イミト ニミー りんぴ

Geometric Description in \mathcal{R}^2

K ロ × K 御 × K 差 × K 差 × 一差 … 2990

Parallelogram Rule

Vectors in \mathcal{R}^2

$$
\mathbf{u} = \left(\begin{array}{c} 2 \\ 2 \end{array}\right), \ \mathbf{v} = \left(\begin{array}{c} -6 \\ 1 \end{array}\right), \ \mathbf{u} + \mathbf{v} = \left(\begin{array}{c} -4 \\ 3 \end{array}\right).
$$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Linear Combinations

Given vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n \in \mathcal{R}^n$, and scalars $c_1, c_2, \cdots, c_n \in \mathcal{R}$, the vector

$$
\mathbf{y}=c_1\,\mathbf{u}_1+c_2\,\mathbf{u}_2+\cdots+c_n\,\mathbf{u}_n
$$

is a Linear Combination of vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ with weights c_1, c_2, \cdots, c_n . **Example:** With $c_1 = -2$, $c_2 = 3$,

$$
\mathbf{u}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}.
$$

$$
\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 = \begin{pmatrix} 11 \\ 8 \\ 3 \end{pmatrix}.
$$

KORK ERKER ADE YOUR

$Span (I)$

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by Span $\{v_1, \ldots, v_p\}$ and is called the subset of \mathbb{R}^n spanned (or **generated)** by $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$
c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

with c_1, \ldots, c_p scalars.

Example span in \mathcal{R}^3

イロト イ御 トイミト イミト ニミー りんぴ

To Span or not to Span?

Linear Algebra is both interesting and challenging

KORK ERKER ADE YOUR

§1.4 Matrix Equation $A\mathbf{x} = \mathbf{b}$

Column vector representation of matrix $A \in \mathcal{R}^{m \times n}$:

$$
A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 3 & -2 & -4 & 4 \\ -2 & -4 & -2 & 5 \end{pmatrix} \in \mathbb{R}^{3 \times 4}
$$

= $(\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4), \text{ where } \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4 \in \mathbb{R}^3$

K ロ X K 메 X K B X X B X X D X O Q Q O

Matrix-vector Product \Longleftrightarrow Linear Combination (I)

If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n , and if x is in \mathbb{R}^n , then the product of A and x, denoted by Ax , is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$
A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n
$$

KID KA KERKER E VOOR

Matrix-vector Product \Longleftrightarrow Linear Combination (II)

Example:

KORK STRAIN A BAR SHOP

Linear Equations in terms of Matrix-vector Product **Example**

$$
x_1 + 2x_2 - x_3 = 4
$$

-5x₂ + 3x₃ = 1

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

equivalent to $x_1\begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2\begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3\begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Linear Equations in terms of Matrix-vector Product **Example**

$$
x_1 + 2x_2 - x_3 = 4
$$

-5x₂ + 3x₃ = 1

B

 $2Q$

Linear Equations in terms of Linear Combinations

If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n , and if b is in \mathbb{R}^m , the matrix equation

$$
A\mathbf{x} = \mathbf{b} \tag{4}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

has the same solution set as the vector equation

$$
x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}
$$
 (5)

Linear Equations in terms of Linear Combinations

If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n , and if **b** is in \mathbb{R}^m , the matrix equation

$$
A\mathbf{x} = \mathbf{b} \tag{4}
$$

has the same solution set as the vector equation

$$
x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}
$$
 (5)

The equation $Ax = b$ has a solution if and only if b is a linear combination of the columns of A .