Self Introduction

» Name: Ming Gu

» Office: 861 Evans

» Email: mgu®@berkeley.edu

» Office Hours: MTuWF 4:15-5:30PM

» Class Website:
math.berkeley.edu/~mgu/MAb54Spring2019

» Lecture notes available on bCourses



Text Book
» UC Berkeley Edition,

Linear Algebra and Applications, required.
» Closely follow Math Dept outlines for Math 54.

» Students responsible for material left out in
lectures.



i Secure | https://math.berkeley.edu/courses/choosing/lowerdivcourses/math54
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Math 54

Math 54 - Linear Algebra & Differential Equations -- [4 units]
Course Format: Three hours of lecture and three hours of discussion per week.

Prerequisites: 1A-18, 10A-108 or equivalent.

Deseription: Basic linear algebra; matrix arithmetic and determinants. Vector spaces; inner product spaces. Eigenvalues and elgenvectors; linear
transformations, symmetric matrices. Linear ordinary differential equations (ODE); systems of linear ODE. Fourier series. (F,SP)

Textbook: Lay-Lay-McDonald, Linear Algebra and its Appli (5th ed) and Nag of Equations and
Boundary Value Prablems (th ed). A specialy prced LC Berkeley paperback edton of both books s avalible.

Part One: (Lay et al)
Chaper 1:

inear Equations in linear algebra 4hours
Sections 1.1-1.5, 1.7-1.9

Chapter 2: Matrix Algebra 2hours
Sections 2.1-2.3

Chapter 3: Determinants 3 hours
Sections 3.1-3.3

Chapter 4: Vector Spaces S hours
Sections 4.1-4.7

Chapter 5: Eigenvalues and eigenvectors 4hours
Sections 5.1-5.4

Chapter 6: Orthogonality, least Squares 5 hours
Sections 6.1-6.5, 6.7
Chapter 7: Symmetric matrices, applications 3 hours

Qertinne 71 7378



Class Work
» Weekly home work sets;
Count best 10, total 15 points.

» Weekly Quizzes (except on midterm weeks);
Count best 10, total 15 points.

» Two midterm exams:
the worse is 15 points, the better 25 points.

» 1 final exam, 30 points.



Class Work
» Weekly home work sets;
Count best 10, total 15 points.

» Weekly Quizzes (except on midterm weeks);
Count best 10, total 15 points.
» Two midterm exams:
the worse is 15 points, the better 25 points.
» 1 final exam, 30 points.
» If you miss one midterm, your other

midterm and the final will be worth 30 and
40 points, respectively.



Exam Schedule

» Midterm I: Feb. 20 (Wed.) in class
» Midterm II: Mar. 20 (Wed.) in class
» Final Exam: Tue., May 14, 7:00-10:00pm



Grade Scale

» A- to A+: at least 85 points;

» B- to B+4: between 70 and 85 points;
» C- to C+: between 60 and 70 points;
» D: between 55 and 60 points;

» F: less than 55 points.

No grade curve; most people get A level or B level grades.




| took Algebra in High School
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§1.1  Systems of Linear Equations

linear equation is of form
aix1+axxp+---+apx,=b, where
> ai,a, - ,ap are COEFFICIENTS;

> Xi,Xp,+* ,Xp are VARIABLES;
» b is RIGHT HAND SIDE.

Linear equation example:
4x1 —5x0+3x3 =2.
System of linear equations example:

4x1 —5x+3x3 = 2,
2X2—X3 = 1,
—3X1+8X3 = 5.



Linear Algebra is 2000 years old (I)

250 AD, 9 Chapters of the Mathematical Art

Mathematician using counting rods
on a counting table

The only treatment of linear egns.
and Gaussian elimination in antiquity.
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Liu Hui said Nine
Chapters were
already old (~

100 BC ?) when
he wrote about
them in 250 AD.



Linear Algebra is 2000 years old (II)

Chapter 8 of the Nine Chapters

Problem 1 (of 18 similar problems)

For 3 sheaves of rice from top-grade rice paddies,
and 2 sheaves from medium-grade paddies,

and 1 sheaf from low-grade paddies,

the combined yield is 39 dou of grain.

And so on for two more collections of paddies.

For each grade, 1 sheaf yields how much rice?

Counting Table Setup

1

2

3

2

3

2

3

1

1

26

34

39

top-grade sheaves
mid-grade
low-grade

grain



Linear Algebra is 2000 years old (III): One dou of grain

F5




Linear Algebra is 2000 years old (IV)

Chapter 8 of the Nine Chapters

Solution
x3 —x1
X3 —%x2 Xx5— x4 <9
1) 2|3 3 3 3
20 32 N 4| 5| 2 52 N 502
311 811 36 1|1 4/ 11
263439 39(24|39 99 24|39 11|24 |39
R. Hart, The Chinese Roots of 4 1
Linear Algebra, Johns-Hopkins low = +
University Press, 2011. 4 o
Reviewed by J. F. Grear, 4 = mid = r
Bull. Amer. Math. Soc. top = k74
49 (2012), 585-590. 111737 P 4




Linear Algebra is 2000 years old, but named after Gauss

Successful Calculations Have 4 Ingredients

g‘; 1. Impact for society
G 2. Mathematical formulation
3. Technology for computing

4. Algorithm appropriate to # 3

C. F. Gauss

1777-1855
1 impact astronomy and cartography
2 math Gauss’s adjustment of observations
3 technology hand computing (probably logarithms)
4 algorithm  Gauss’s brackets




Linear equations, exactly one solution

System of two linear equations:

x1—2x = —1, (f)
—x1+3x = 3. (f)

FIGURE 1 Exactly one solution.



Linear equations, no solution or too many solutions

@ x-2p=-1 (b) x;-2x=-1
X+ 2= 3 “nt2n=1

FIGURE 2 (a) No solution. (b) Infinitely many solutions.



Linear equations, solution in 3D

System of linear equations:

Solution x; =1, xp =0, x3 = —1.

x| —2X0 4+ X3
X2 — 8X3

5x1 —5x3

10.



Linear equations, solution in 3D

System of linear equations:

Solution x; =1, xo =0, x3 = —1

X1 —2x2 + X3
X2 —8X3

5X1 —5X3




Matrix Notation

System of linear equations:

X1 —2x2 + X3
X — 8x3

5X1 —5X3

10.



Matrix Notation

System of linear equations:

» coefficient matrix

A=1 0

» right hand side (RHS)

» augmented matrix
1 -2 1
A= 0 1 -8
5 0 -5

x1—2x0+x3 = 0,
X2—8X3 = 8,
5x1 —5x3 = 10.

-2 1

1 -8

0 -5

0

8

10

0
8 |=(A | b)
10



Nine Chapters Problem

System of linear equations: x1 +2x+3x3 = 26, (¢1)
2x14+3x0+x3 = 34, (62)
3x1+2x+x3 = 30. (£3)

x1 = top—grade, x, = mid—grade, x3 = low—grade.



Nine Chapters Problem

System of linear equations: x3 +2x» +3x3 = 26,
2X1+3X2—|—X3 = 34,
3x1+2x+x3 = 30.

x1 = top—grade, x, = mid—grade, x3 = low—grade.
» coefficient matrix
3
1
1

A_

2
3
» right hand side (RHS) 2

1
2
3
» augmented matrix (

A:

w N =
N W DN
= = W
w
>
I
—~
>
o
SN—



Gaussian Elimination (1)

> 3X(f1)*1><(63) — new (81), 3X(f2)*2><(€3) — new (fz)

System of linear equations: 4x; +8x3 = 39, (/1)

|
N
\'-P
—
(S

N
~

5x +x3
3x1+2x+x3 = 39. (¢3)

» augmented matrix

0 4 8 39
A=1 0 5 1 24
321 39



Gaussian Elimination (1)

» 5 x (51) —4 x (52) — new (61)

System of linear equations: 36x3 =

5x0+x3 =

3x1+2x0+x3 =

» augmented matrix

0 0 36 99

A=10 5 1 24

32 1 39

Solution

11 17 37
X3 = — X2=— X1=



ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and & multiple of another
row

2, (Interchange) Interchange two rows,
3. (Scaling) Multiply all entries in a row by a nonzero constant.




ELEMENTARY ROW OPERATIONS

Tow?

2, (Interchange) Interchange two rows,

3. (Scaling) Multiply all entries in a row by a nonzero constant.

1. (Replacement) Replace one row by the sum of itself and & multiple of another

» Example: Row interchange

System of linear equations: 36 x3
5x + X3

3x14+2x0 + x3

\

New System: 3x; +2x + X3
5x0 +x3

36 x3

99,
24,
39.

39,
24



TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEN
L Tsthesytem conitn, i, ogsa astone ot et
0, 1 oluon exits, i1t the oy one at i, i the olon migue




TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM
L Tsthesytem conitn, i, ogsa astone ot et
0, 1 oluon exits, i1t the oy one at i, i the olon migue

A SYSTEM OF INCONSISTENT EQUATIONS
WALKS INTO A DOCTOR'S OFFICE...

SORRY, BUT I
CAN'T HELP YOU.

P Xx+2ytz= 3
i i 3x-2y-4z=4:
'-2x-4y-2z=5:

spikedmath.com
@ 2014




Inconsistent Equations

System of linear equations: x+2y 4z
3x—2y—4z
—2x—4y -2~z



Inconsistent Equations

System of linear equations: x+2y+4+z = 3,
3x—2y—4z 4,
—2x—4y -2z = 5. (63)

» augmented matrix
1 2 1 3
A= 3 -2 —4 4 | = ( A ‘ b )
-2 -4 =2 5
> 1 x (62) —3x (51) — new (52),

1x (£3) —(—2) x (£3) = new (£3).
» new augmented matrix



§1.2 Row Reduction and Echelon Form (1)

In Augmented matrix, the row echelon form (REF)

A=(A | b)
[0 & % % % % % % x
0 0 0 ®m % % x % x
0 0 0 0 m % % % x
0 0 0 0 0 m % % «
_U 0 0 0 0 0 0 0 =

where B #£ 0, x = any entry.
REF allows B variables to be easily solved.

W W W W W




§1.2 Row Reduction and Echelon Form (II)

In rectangular matrix, a leading entry of a row is the leftmost
non-zero.
For augmented matrix in row echelon form

o O oo OO
Lo I e R - T - T |
Lom R e Y ame N an R 3
o o o om
o o o m W
oo ¥ W
o M W W
o W W W W
m ¥ W ¥
W W W W W

variables with leading entry B can be solved in terms of the other
variables.



§1.2 Row Reduction and Echelon Form (lI1)

A rectangolar matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. Al nonzero rows are above any rows of all zeros.

2, Eachleading entry of a row is in a column to the right of the leading entry of
the row above 1.

3. Allentries in a column below a leading entry are zeros.

o O o O O
o O OO O m
= o o O W
= O o om
o om W w
[=eeE S T .
W W W W
m ¥ ¥ W
W W W W W

= O m W




§1.2 Row Reduction and Echelon Form (IV)

A rectangolar matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. Al nonzero rows are above any rows of all zeros.

2, Eachleading entry of a row is in a column to the right of the leading entry of
the row above 1.

3. Allentries in a column below a leading entry are zeros.

1 0 =5 1
0 1 1 4
0O 0 0 O




Row Reduction Algorithm (1)

In rectangular matrix, a pivot position is a position that
corresponds to a leading entry; and pivoting column is a column
that contains a pivot position.

— Pivot
1< 4 5 -9 -7
-1 -2 -1 3 1
-2 -3 0 3 —1
0 -3 -6 4 9

L Pivot column



Row Reduction Algorithm (1)

In rectangular matrix, a pivot position is a position that
corresponds to a leading entry; and pivoting column is a column
that contains a pivot position.

— Pivot
1< 4 5 -9 -7
-1 -2 -1 3 1
-2 -3 0 3 —1
0 -3 -6 4 9

L Pivot column



Row Reduction Algorithm (1)

In rectangular matrix, a pivot position is a position that
corresponds to a leading entry; and pivoting column is a column
that contains a pivot position.

— Pivot
1< 4 5 -9 -7
-1 -2 -1 3 1
-2 -3 0 3 —1
0 -3 -6 4 9

L Pivot column



Row Reduction Algorithm (I1)

T 0 -3 6 4 9]

-1 -2 -1 3 1

2 -3 0 3 -1
1 4 5-9 7]




Row Reduction Algorithm (I11)

Interchange rows 1 and 3 to reach pivot position.

— Pivot
1< 4 5 -9 -7
-1 -2 -1 3 1
-2 -3 0 3 —1
0 -3 -6 4 9

T— Pivot column



Row Reduction Algorithm (IV)

row, — (—1) x row; — rowp,

rowz — (—2) X row; — rows

Pivot
4J 5 -9 -7
2 4 —6 —6
5 10 —15 —15
-3 -6 4 9

A

o o

Next pivot column

no row interchange needed




Row Reduction Algorithm (V)

5
rows — <2 X rowz — [rows,

rowy — <2> X FOW2 — FOWy

5 -9 -7
4 —6 —6
0 0 0
0 =5 0

= O O =
o O N B

interchange rows and row;;‘




Row Reduction Algorithm (VI)

L L}
o o m

o o o W

= o W

= B .

- % o >
L 1




Solution of Linear Equations

Pivot
[ 4 5-9-7 P K
024_6_6Glf0I**
eneral form;
0 0 0-5¢0 0 0 0
00000 0 0 0
t ‘ Pivot colurns
x1+4x0+5x3—9x4 = -7,
2x0 +4x3—6x4 = —6,
—5X4 = 0.
Solution: with x3 free,
x4 =0, x=-3-2x3, xy =5+ 3x3.

x1, X2, x4: basic variables; x3: free variable.J




» Existence: A linear system is consistent <=
rightmost column in (A | b) is not pivot column.
> Uniqueness: A consistent linear system contains

» either: unique solution but no free variable,
» or: infinitely many solutions with at least one free variable.



§1.3 Vector Equations
Vectors in R?

= (2) e

Then
5
u1—|—u2—<2>, U3—Ul,2u4—<

21
2 o

- W
~
&
Il
—
=N
~
S
\
—

)



§1.3 Vector Equations
Vectors in R?

= (2) e

Then
5 2
U1+u2_(2>,U3_U1,QU4_<2Z;>.

= W
N—
g
|
7N
= N
N—
£
Il
7 N
5 5
N—

1
Vectors in R3: a=| 0 |,
1
w1
. w2
Vectors in R": w =



Geometric Description in R?

() (-] (-2-) (3,-1)

FIGURE 4 Vectors as poinis. FIGURE 2 Vectors with arrows.



Parallelogram Rule

Vectors in R?

== a1




Linear Combinations

Given vectors ug,up,--- ,u, € R”, and scalars ¢c1, ¢, -+ ,¢p € R,
the vector

y=cuy+cuy+---+Cchu,
is a Linear Combination of vectors uj, uy, - -- ,u, with weights
C1,C2, " ,Cn.
Example: With ¢ = —2,¢, = 3,

2 5

u; = -1 , Uy = 2
0 1

11

y=cu+ouy= 8



Span (1)

If vy,...,v, are in R”, then the set of all linear combinations of vi,...,v,
is denoted by Span{v,,...,v,} and is called the subset of R" spanned (or
generated) by v,,...,v,. That is, Span{v;,...,v,} is the collection of all
vectors that can be written in the form

(BLJI8 %) /I SRR 2

withcy, ..., ¢, scalars.



Span (I1)

Example span in R?

/
.,——-:'/'



To Span or not to Span?

‘ Linear Algebra is both interesting and chaIIenging‘

Lt

Taylors Francis Online

ST Journal . . L. .
International Journal of Mathematical Education in Science and Technology
M.“wmaswal >

Education

SRl Volume 41, 2010 - Issue 2: Advanced Mathematical Topics: Transitions, Evolutions and

297 Original Articles
P Student learning of basis, span and linear
independence in linear algebra
Bd“ Sepideh Stewart & Michael 0. Thomas =
Pages 173-188 | Received 18 Sep 2009, Published online: 15 Feb 2010

Altmetric &6 Download citation https:/fdoi.org/10.1080/00207390903399620



§1.4 Matrix Equation Ax=b

Column vector representation of matrix A € R™*" :

1| 2] 113
A = 3| —2| 4|4 | e R
2| -4 =215
£ | |

= ( a; ar asz ag ) ,  where ai, ap, az, az € R3



Matrix-vector Product <= Linear Combination (I)

If 4 15 en mxn mateix, with columns ay,....a,, and if x 15 in R”, then the
product of A and x, denoted by Ax, i the inear combination of the columins
of A using the corresponding entries in x as weights; that i,

A= g -]

.xl.

=X T A Tt Xyl



Matrix-vector Product <= Linear Combination (II)

Example:




Linear Equations in terms of Matrix-vector Product
Example

Nty - n=4
=t =1

IREEEN

equivalent to



Linear Equations in terms of Matrix-vector Product
Example

Nty - n=4
=t =1

o] )|
i

equivalent to



Linear Equations in terms of Linear Combinations

If A'1s anm x n matrix, with columns ay,..., ,, and if 15 in ", the matrix
¢quation
Ax=bh o

has the same solution set & the vector equation

Y0t 0d =D ()



Linear Equations in terms of Linear Combinations

If A'1s anm x n matrix, with columns ay,..., ,, and if 15 in ", the matrix
¢quation
Ax=bh 4

has the same solution set & the vector equation

Y0t 0d =D 0)

Thsequaton A = b a2 ohtion dly £ i oeacombmaionof e
ol of A,



