Self Introduction

- ► Name: Ming Gu
- ▶ Office: 861 Evans
- Email: mgu@berkeley.edu
- ► Office Hours: MTuWF 4:15-5:30PM
- Class Website:
 - $math.berkeley.edu/{\sim}mgu/MA54Spring2019$

Lecture notes available on bCourses

Text Book

- UC Berkeley Edition,
 Linear Algebra and Applications, required.
- Closely follow Math Dept outlines for Math 54.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Students responsible for material left out in lectures.

secure nttps://matn.pr	errerey.euu/courses/crioosing/loweruivcourses/iffdtf154						
Unfinished Bathro 🚷 v 📿) Guys can you expl 💪 bathroom cabinet 🔷 Computer Science 🔷 biomedical comp 🕍 Top !	Staffing Agen 🗎	New folder				
				CalN			
MAT	HEMATICS + BERKELEY	Search		60 00			
University of	California, Berkeley						
•	About People Research Degree Programs	v Courses v	Make a Gift 🔻	Resou			
Math Courses Overview	Home > Courses > Math Courses Overview > Lower Division Course Outlines >						
Choosing Courses	Moth E4						
ALEKS Assessment	Maul 34						
and Learning Tool	Math 54 - Linear Algebra & Differential Equations [4 units]						
High School Exam	Course Format: Three hours of lecture and three hours of discussion per week.						
Credits	Prerequisites: 1A-1B, 10A-10B or equivalent.						
Lower Division Course Outlines	Description: Basic linear algebra; matrix arithmetic and determinants. Vector spaces; inner product spac transformations, symmetric matrices. Linear ordinary differential equations (ODE); systems of linear ODE	es. Eigenvalues and Fourier series. (F,	d eigenvectors; li ,SP)	near			
Honors Courses	Textbook: Lay-Lay-McDonald, Linear Algebra and its Applications (5th ed) and Nagle-Saff-Snider, Fundamentals of Differential Equations and Boundary Value Problems (6th ed). A specially priced UC Berkeley paperback edition of both books is available.						
Course Catalon							
Descriptions	Part One: (Lay et al)						
Course Offerings	Chapter 1: Linear Equations in linear algebra		4 hours				
Casing 2010	Sections 1.1-1.5, 1.7-1.9						
Spring 2019	Chapter 2: Matrix Algebra		2 hours				
Summer 2019	Sections 2.1-2.3						
All Semesters	Chapter 3: Determinants		3 hours				
Enrollment	Sections 3.1-3.3						
Availability Updates	Chapter 4: Vector Spaces		5 hours				
Enrollment Guidelines	Sections 4.1-4.7						
Concurrent	Chapter 5: Eigenvalues and eigenvectors		4 hours				
Enrollment	Sections 5.1-5.4						
Search Courses	Chapter 6: Orthogonality, least Squares		5 hours				
Tutoring	Sections 6.1-6.5, 6.7						
Office Hours	Chapter 7: Symmetric matrices, applications		3 hours				
Office Hours	Sartions 7 1 7 3-7 5						

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Class Work

- Weekly home work sets;
 Count best 10, total 15 points.
- Weekly Quizzes (except on midterm weeks);
 Count best 10, total 15 points.
- Two midterm exams: the worse is 15 points, the better 25 points.

▶ 1 final exam, 30 points.

Class Work

- Weekly home work sets;
 Count best 10, total 15 points.
- Weekly Quizzes (except on midterm weeks);
 Count best 10, total 15 points.
- Two midterm exams: the worse is 15 points, the better 25 points.
- ▶ 1 final exam, 30 points.
- If you miss one midterm, your other midterm and the final will be worth 30 and 40 points, respectively.

Exam Schedule

- ▶ Midterm I: Feb. 20 (Wed.) in class
- ▶ Midterm II: Mar. 20 (Wed.) in class
- ► Final Exam: Tue., May 14, 7:00-10:00pm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Grade Scale

- ► A- to A+: at least 85 points;
- ▶ B- to B+: between 70 and 85 points;
- ► C- to C+: between 60 and 70 points;
- ▶ D: between 55 and 60 points;
- ► F: less than 55 points.

No grade curve; most people get A level or B level grades.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I took Algebra in High School

What are you studying? Algebra. Oh... I took that in high school. 1 TRI 20090 ヘロト 人間ト 人団ト 人団ト

э

§1.1 Systems of Linear Equations

linear equation is of form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$
, where

• a_1, a_2, \cdots, a_n are COEFFICIENTS;

- x_1, x_2, \cdots, x_n are VARIABLES;
- **b** is RIGHT HAND SIDE.

Linear equation example:

$$4 x_1 - 5 x_2 + 3 x_3 = 2.$$

System of linear equations example:

$$4 x_1 - 5 x_2 + 3 x_3 = 2,$$

$$2 x_2 - x_3 = 1,$$

$$-3 x_1 + 8 x_3 = 5.$$

Linear Algebra is 2000 years old (I)

250 AD, 9 Chapters of the Mathematical Art

The only treatment of linear eqns. and Gaussian elimination in antiquity.

Liu Hui said Nine Chapters were already old (≈ 100 BC ?) when he wrote about them in 250 AD.

Linear Algebra is 2000 years old (II)

Chapter 8 of the Nine Chapters

Problem 1 (of 18 similar problems)

For 3 sheaves of rice from top-grade rice paddies, and 2 sheaves from medium-grade paddies, and 1 sheaf from low-grade paddies, the combined yield is 39 dou of grain.

And so on for two more collections of paddies.

For each grade, 1 sheaf yields how much rice?

Counting Table Setup

1	2	3	top-grade sheaves
2	3	2	mid-grade
3	1	1	low-grade
26	34	39	grain

Linear Algebra is 2000 years old (III): One dou of grain

Linear Algebra is 2000 years old (IV)

Chapter 8 of the Nine Chapters

Solution

R. Hart, *The Chinese Roots of Linear Algebra*, Johns-Hopkins University Press, 2011.

Reviewed by J. F. Grcar, *Bull. Amer. Math. Soc.* 49 (2012), 585-590. $\cdots \Rightarrow$

4 $low = \frac{11}{4}$ 4 \Rightarrow mid = $\frac{17}{4}$ 4 $top = \frac{37}{4}$ 11 17 37

Linear Algebra is 2000 years old, but named after Gauss

Successful Calculations Have 4 Ingredients

- 2. Mathematical formulation
- 3. Technology for computing
- 4. Algorithm appropriate to # 3

1	impact	astronomy and cartography
2	math	Gauss's adjustment of observations
3	technology	hand computing (probably logarithms)
4	algorithm	<i>Gauss's brackets</i>

Linear equations, exactly one solution

System of two linear equations:

$$x_1 - 2 x_2 = -1, \quad (\ell_1)$$

 $-x_1 + 3 x_2 = 3. \quad (\ell_2)$

FIGURE 1 Exactly one solution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear equations, no solution or too many solutions

(a)
$$x_1 - 2x_2 = -1$$
 (b) $x_1 - 2x_2 = -1$
 $-x_1 + 2x_2 = 3$ $-x_1 + 2x_2 = 1$

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Linear equations, solution in 3D

System of linear equations:
$$x_1 - 2x_2 + x_3 = 0$$
,
 $x_2 - 8x_3 = 8$,
 $5x_1 - 5x_3 = 10$.

Solution $x_1 = 1$, $x_2 = 0$, $x_3 = -1$.

Linear equations, solution in 3D

System of linear equations:
$$x_1 - 2x_2 + x_3 = 0$$
,
 $x_2 - 8x_3 = 8$,
 $5x_1 - 5x_3 = 10$.

Solution $x_1 = 1$, $x_2 = 0$, $x_3 = -1$.

Matrix Notation

System of linear equations: $x_1 - 2x_2 + x_3 = 0$, $x_2 - 8x_3 = 8$, $5x_1 - 5x_3 = 10$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Matrix Notation

System of linear equations:
$$x_1 - 2x_2 + x_3 = 0$$
,
 $x_2 - 8x_3 = 8$,
• coefficient matrix $5x_1 - 5x_3 = 10$.
 $A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -8 \\ 5 & 0 & -5 \end{pmatrix}$
• right hand side (RHS)
 $b = \begin{pmatrix} 0 \\ 8 \\ 10 \end{pmatrix}$
• augmented matrix
 $A = \begin{pmatrix} 1 & -2 & 1 & | & 0 \\ 0 & 1 & -8 & | & 8 \\ 5 & 0 & -5 & | & 10 \end{pmatrix} = (A | b)$

Nine Chapters Problem

System of linear equations: $x_1 + 2 x_2 + 3 x_3 = 26$, (ℓ_1) $2 x_1 + 3 x_2 + x_3 = 34$, (ℓ_2) $3 x_1 + 2 x_2 + x_3 = 39$. (ℓ_3)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $x_1 =$ top-grade, $x_2 =$ mid-grade, $x_3 =$ low-grade.

Nine Chapters Problem

System of linear equations:
$$x_1 + 2x_2 + 3x_3 = 26$$
, (ℓ_1)
 $2x_1 + 3x_2 + x_3 = 34$, (ℓ_2)
 $3x_1 + 2x_2 + x_3 = 39$. (ℓ_3)
 $x_1 = top-grade, x_2 = mid-grade, x_3 = low-grade.$
> coefficient matrix
 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}$
> right hand side (RHS)
 $b = \begin{pmatrix} 26 \\ 34 \\ 39 \end{pmatrix}$
> augmented matrix
 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix} = (A | b)$

Gaussian Elimination (I)

▶
$$3 \times (\ell_1) - 1 \times (\ell_3) \rightarrow \text{new} \ (\ell_1), \ 3 \times (\ell_2) - 2 \times (\ell_3) \rightarrow \text{new} \ (\ell_2)$$

System of linear equations: $4x_2 + 8x_3 = 39$, (ℓ_1) $5x_2 + x_3 = 24$, (ℓ_2) $3x_1 + 2x_2 + x_3 = 39$. (ℓ_3)

augmented matrix

$$\mathcal{A} = \left(\begin{array}{cccc} 0 & 4 & 8 & & 39 \\ 0 & 5 & 1 & & 24 \\ 3 & 2 & 1 & & 39 \end{array} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gaussian Elimination (II)

▶
$$5 \times (\ell_1) - 4 \times (\ell_2) \rightarrow \mathsf{new}$$
 (ℓ_1)

System of linear equations:
$$36 x_3 = 99$$
, (ℓ_1)
 $5 x_2 + x_3 = 24$, (ℓ_2)
 $3 x_1 + 2 x_2 + x_3 = 39$. (ℓ_3)

augmented matrix

$$\mathcal{A} = \left(\begin{array}{cccc} 0 & 0 & 36 & | & 99 \\ 0 & 5 & 1 & | & 24 \\ 3 & 2 & 1 & | & 39 \end{array} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solution

$$x_3 = \frac{11}{4}, \quad x_2 = \frac{17}{4}, \quad x_1 = \frac{37}{4}.$$

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another row.²

- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

ELEMENTARY ROW OPERATIONS

- (Replacement) Replace one row by the sum of itself and a multiple of another row.²
- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

Example: Row interchange

System of linear equations:
$$36 x_3 = 99$$
, (ℓ_1)
 $5 x_2 + x_3 = 24$, (ℓ_2)
 $3 x_1 + 2 x_2 + x_3 = 39$. (ℓ_3)
 $\downarrow \downarrow$
New System: $3 x_1 + 2 x_2 + x_3 = 39$, (ℓ_1)
 $5 x_2 + x_3 = 24$, (ℓ_2)
 $36 x_3 = 99$. (ℓ_3)

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

- 1. Is the system consistent; that is, does at least one solution exist?
- 2. If a solution exists, is it the only one; that is, is the solution unique?

Inconsistent Equations

System of linear equations: x + 2y + z = 3, (ℓ_1) 3x - 2y - 4z = 4, (ℓ_2) -2x - 4y - 2z = 5. (ℓ_3)

Inconsistent Equations

System of linear equations:
$$x + 2y + z = 3$$
, (ℓ_1)
 $3x - 2y - 4z = 4$, (ℓ_2)
 $-2x - 4y - 2z = 5$. (ℓ_3)

augmented matrix

$$\mathcal{A} = \left(\begin{array}{cccc} 1 & 2 & 1 & | & 3 \\ 3 & -2 & -4 & | & 4 \\ -2 & -4 & -2 & | & 5 \end{array} \right) = \left(\begin{array}{cccc} A & | & b \end{array} \right)$$

▶
$$1 \times (\ell_2) - 3 \times (\ell_1) \rightarrow \text{new} (\ell_2),$$

 $1 \times (\ell_3) - (-2) \times (\ell_3) \rightarrow \text{new} (\ell_3).$

new augmented matrix

$$\mathcal{A} = \begin{pmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -8 & -7 & | & -5 \\ 0 & 0 & 0 & | & 11 \end{pmatrix}$$

$\S1.2$ Row Reduction and Echelon Form (I)

In Augmented matrix, the row echelon form (REF)

$$\mathcal{A} = (A \mid b)$$

where $\blacksquare \neq 0, * =$ any entry. REF allows \blacksquare variables to be easily solved.

$\S1.2$ Row Reduction and Echelon Form (II)

In rectangular matrix, a **leading entry** of a row is the leftmost non-zero.

For augmented matrix in row echelon form

variables with leading entry \blacksquare can be solved in terms of the other variables.

$\S1.2$ Row Reduction and Echelon Form (III)

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

$\S1.2$ Row Reduction and Echelon Form (IV)

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- **2.** Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and **pivoting column** is a column that contains a pivot position.

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and **pivoting column** is a column that contains a pivot position.

Row Reduction Algorithm (I)

In rectangular matrix, a **pivot position** is a position that corresponds to a leading entry; and **pivoting column** is a column that contains a pivot position.

Row Reduction Algorithm (II)

$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Row Reduction Algorithm (III)

Interchange rows 1 and 3 to reach pivot position.

Row Reduction Algorithm (IV)

$$\begin{array}{rrr} \mathsf{row}_2-(-1)\times\mathsf{row}_1 & \to & \mathsf{row}_2,\\ \mathsf{row}_3-(-2)\times\mathsf{row}_1 & \to & \mathsf{row}_3 \end{array}$$

no row interchange needed

Row Reduction Algorithm (V)

$$egin{array}{lll} {
m row}_3 - \left(rac{5}{2}
ight) imes {
m row}_2 &
ightarrow {
m row}_3, \ {
m row}_4 - \left(rac{-3}{2}
ight) imes {
m row}_2 &
ightarrow {
m row}_4 \end{array}$$

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{bmatrix}$$

interchange **row**₃ and **row**₄

Row Reduction Algorithm (VI)

イロト 不得下 イヨト イヨト

э

Solution of Linear Equations

Solution: with x_3 free,

$$x_4 = 0, \ x_2 = -3 - 2 x_3, \ x_1 = 5 + 3 x_3.$$

▲□▼▲□▼▲□▼ □ シタの

 x_1, x_2, x_4 : basic variables; x_3 : free variable.

- ► Existence: A linear system is consistent ⇔ rightmost column in (A | b) is not pivot column.
- Uniqueness: A consistent linear system contains
 - either: unique solution but no free variable,
 - or: *infinitely* many solutions with at least one free variable.

$\S1.3$ Vector Equations

Vectors in \mathcal{R}^2

$$\mathbf{u}_1 = \begin{pmatrix} 2\\1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 3\\1 \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} 2\\1 \end{pmatrix}, \ \mathbf{u}_4 = \begin{pmatrix} \mu_1\\\mu_2 \end{pmatrix}.$$

Then

$$\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} 5\\2 \end{pmatrix}, \ \mathbf{u}_3 = \mathbf{u}_1, \ 2 \, \mathbf{u}_4 = \begin{pmatrix} 2 \, \mu_1\\2 \, \mu_2 \end{pmatrix}.$$

$\S1.3$ Vector Equations

Vectors in \mathcal{R}^2

$$\mathbf{u}_1 = \begin{pmatrix} 2\\1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 3\\1 \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} 2\\1 \end{pmatrix}, \ \mathbf{u}_4 = \begin{pmatrix} \mu_1\\\mu_2 \end{pmatrix}.$$

Then

$$\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} 5\\2 \end{pmatrix}, \ \mathbf{u}_3 = \mathbf{u}_1, \ 2 \, \mathbf{u}_4 = \begin{pmatrix} 2 \, \mu_1\\2 \, \mu_2 \end{pmatrix}.$$

1 . . .

Vectors in
$$\mathcal{R}^3$$
: $\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$,
Vectors in \mathcal{R}^n : $\mathbf{w} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{pmatrix}$.

Geometric Description in \mathcal{R}^2

・ロト・4回ト・4回ト・4回ト・4回ト

Parallelogram Rule

Vectors in \mathcal{R}^2

$$\mathbf{u} = \begin{pmatrix} 2\\2 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} -6\\1 \end{pmatrix}, \ \mathbf{u} + \mathbf{v} = \begin{pmatrix} -4\\3 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Linear Combinations

Given vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n \in \mathcal{R}^n$, and scalars $c_1, c_2, \cdots, c_n \in \mathcal{R}$, the vector

$$\mathbf{y} = c_1 \, \mathbf{u}_1 + c_2 \, \mathbf{u}_2 + \cdots + c_n \, \mathbf{u}_n$$

is a Linear Combination of vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ with weights c_1, c_2, \cdots, c_n . Example: With $c_1 = -2, c_2 = 3$,

$$\mathbf{u}_1 = \begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 5\\ 2\\ 1 \end{pmatrix},$$
$$\mathbf{y} = c_1 \,\mathbf{u}_1 + c_2 \,\mathbf{u}_2 = \begin{pmatrix} 11\\ 8\\ 3 \end{pmatrix}.$$

Span (I)

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, \ldots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with c_1, \ldots, c_p scalars.

Example span in \mathcal{R}^3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

To Span or not to Span?

Linear Algebra is both interesting and challenging

297 Views	Original Articles Student learning of hasis snan and linear			
15 CrossRef citations	independence in linear algebra			
to date	Sepideh Stewart & Michael O.J. Thomas 🔤 Pages 173-188 Received 18 Sep 2009, Published online: 15 Feb 2010			
Altmetric	66 Download citation 2 https://doi.org/10.1080/00207390903399620			

§1.4 Matrix Equation $A \mathbf{x} = \mathbf{b}$

Column vector representation of matrix $A \in \mathcal{R}^{m \times n}$:

$$\begin{array}{rcl} \mathcal{A} & = & \left(\begin{array}{ccc|c} 1 & 2 & 1 & 3 \\ 3 & -2 & -4 & 4 \\ -2 & -4 & -2 & 5 \end{array} \right) \in \mathcal{R}^{3 \times 4} \\ & & \uparrow & \uparrow & \uparrow & \uparrow \\ & = & \left(\begin{array}{ccc|c} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{array} \right), & \text{where} \quad \mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \mathbf{a}_4 \in \mathcal{R}^3 \end{array}$$

Matrix-vector Product \iff Linear Combination (I)

If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n , and if x is in \mathbb{R}^n , then the product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Matrix-vector Product \iff Linear Combination (II)

Example:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Linear Equations in terms of Matrix-vector Product Example

$$x_1 + 2x_2 - x_3 = 4$$
$$-5x_2 + 3x_3 = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

equivalent to $x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Linear Equations in terms of Matrix-vector Product Example

$$x_1 + 2x_2 - x_3 = 4$$
$$-5x_2 + 3x_3 = 1$$

Linear Equations in terms of Linear Combinations

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if **b** is in \mathbb{R}^m , the matrix equation

$$A\mathbf{x} = \mathbf{b} \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b} \tag{5}$$

Linear Equations in terms of Linear Combinations

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if **b** is in \mathbb{R}^m , the matrix equation

$$A\mathbf{x} = \mathbf{b} \tag{4}$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b} \tag{5}$$

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.