Name (Last, First)

DongGyu Lim

1. (8pts) Let A be the symmetric matrix given below:

$$
A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}.
$$

- a. Check if $\begin{bmatrix} 1 & 1 & 1\end{bmatrix}^T$ is an eigenvector and find the corresponding eigenvalue.
- b. It is known that 5 is an eigenvalue of A . Find all eigenvalues and orthogonally diagonalize A .
- c. Let $Q(x,y,z) = 4x^2 + 4y^2 + 4z^2 2xy 2yz 2xz$. Express $Q(x,y,z)$ as the sum of 3 weighted squares. In other words, transform it into another one with no cross-product term.¹

 ${\sf Solution.~a.~[1~~1~~1]}^T$ is just the column vector, so you can just check that it is an eigenvector corresponding to the eigenvalue $\lambda_1 = 2$.

b. Let $\lambda_2 = 5$. Then, $A - \lambda_2 I =$ \lceil $\overline{1}$ -1 -1 -1 -1 -1 -1 -1 -1 -1 1 \vert . As the columns are the same, the dimension of Col Λ is 1.

Using the rank theorem, one can see that the dimension of the null space is 2. So, (including the vector from a.) there would be 3 linearly independent vectors. So, we don't need to check what the characteristic polynomial is to find that

$$
E_{\lambda_1} = \text{Span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \quad \text{and} \quad E_{\lambda_2} = \text{Span}\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}.
$$

As A is symmetric, E_{λ_1} and E_{λ_2} would be ortogonal. So, we now need to get an orthogonal basis of E_{λ_2} applying Gram-Schmidt process. Now, we need to change \lceil $\overline{1}$ −1 1 $\overline{0}$ 1 | into \lceil $\overline{1}$ −1 1 $\overline{0}$ 1 MINUS proj −1 0 1 ٦ $\overline{}$ $\sqrt{ }$ \mathcal{L} \lceil $\overline{1}$ −1 1 0 1 $\overline{1}$ \setminus $\Big\}$. So,

we have :

$$
\begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{6} & 2/\sqrt{6} & -1/\sqrt{6} \end{bmatrix}.
$$

c. A is the matrix of the quadratic form. So, using spectral decomposition, one gets $\mathbf{x}^T A\mathbf{x}=\mathbf{x}^T(\lambda_1v_1v_1^T+\lambda_2v_2)$ $\lambda_2v_2v_2^T + \lambda_3v_3v_3^T\big]\mathbf{x} = \lambda_1(v_1^T\mathbf{x})^T(v_1^T\mathbf{x}) + \lambda_2(v_2^T\mathbf{x})^T(v_2^T\mathbf{x}) + \lambda_3(v_3^T\mathbf{x})^T(v_3^T\mathbf{x}) = \lambda_1(v_1^T\mathbf{x})^2 + \lambda_2(v_2^T\mathbf{x})^2 + \lambda_3(v_3^T\mathbf{x})^2.$ Note here that $v_i^T \mathbf{x}$ is 1×1 , so $(v_i^T \mathbf{x})^T = v_i^T \mathbf{x}$. So, it becomes $\frac{2}{3}(x+y+z)^2 + \frac{5}{2}(-x+z)^2 + \frac{5}{6}(-x+2y-z)^2$. 2. (2pts) Find the maximum value of $Q(\mathbf{x})=7x_1^2+3x_2^2-2x_1x_2$, subject to the constraint $x_1^2+x_2^2=1.^2$ **Solution**. By setting up $x'_2 = 2x_2$, we get the standard constrained optimization: finding the maximum of $7x_1^2 +$ $3x_2^{\prime 2}-2x_1x_2^{\prime}$ under the constraint $x_1^2+x_2^{\prime 2}=1.$ The matrix of the quadratic form is

$$
\begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix}.
$$

A theorem of Constrained Optimization tells you that the maximum value you can obtain in this situation is $\lambda_{\rm max}$, the largest eigenvalue. The characteristic polynomial is $(7-\lambda)(3-\lambda)-(-1)^2=\lambda^2-10\lambda+20.$ So, using the the largest eigenvalue. The characteristic polync
formula, we get the larger eigenvalue as $5+\sqrt{5}$.

¹For example, $-x^2 + y^2 - z^2 + 2xy + 4xz = (x + y)^2 - 2(x - z)^2 + z^2$. **Hint** : Use the spectral theorem.

²You don't need to find the x that gives you the mamximum $Q(\mathbf{x})$.