Quiz 1

Name (Last, First)

Dong Gyu Lim

1. Let $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\3\\-8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4\\-1\\7 \end{bmatrix}$. Does the span of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ contain the following vector? Why or why not? $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ Solution. In general, we can check if $\begin{bmatrix} a\\b\\c \end{bmatrix}$ is in the span of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Another way to say this is¹ if the augmented matrix $\begin{bmatrix} 1 & 0 & 4 & a\\0 & 3 & -1 & b\\1 & -8 & 7 & c \end{bmatrix}$ is from a consistent linear system. Applying some row operations, we get

$$\begin{bmatrix} 1 & 0 & 0 & f \\ 0 & 1 & 0 & g \\ 0 & 0 & 1 & h \end{bmatrix}$$

where f, g, h are some functions of a, b, c. In fact, h(a, b, c) = -3a + 8b + 3c. However, no matter what f, g, h are, this implies that the system is consistent. Hence, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ spans \mathbb{R}^3 so that it contains the vector above.

2. The following statement is false. **Construct a specific example** to show that the statement is not always true. (Caution: *Please read carefully. This is different from your HW problem.*)

If v_1 , v_2 , v_3 are in \mathbb{R}^4 and v_3 is not a linear combination of v_1 , v_2 , then $\{v_1, v_2, v_3\}$ is linearly dependent.

Solution. First of all, read the question carefully. One can see that usually the set $\{v_1, v_2, v_3\}$ would be linearly independent. Now, we need to find a counterexample to prove that the statement is false. Now try to make 3 linearly independent vectors in \mathbb{R}^4 as following:

$\mathbf{v}_1 =$	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$, \mathbf{v}_2 =$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$, $\mathbf{v}_3 =$	0 0 1 0	
------------------	--	--------------------	---	--------------------	------------------	--

It is not hard to check if they are linearly independent² and \mathbf{v}_3 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

¹Using the matrix equation format $A\mathbf{x} = \mathbf{b}$.

²Just build up the equation condition for linear dependence.