Final Exam in a nutshell

- \triangleright time: Tuesday, May 14, from 7:00-10:00PM, in Pimentel 1.
	- \triangleright DSP time: Tuesday, May 14, from 4:00-10:00PM in 1015 Evans Hall, with DSP letter only.
- \triangleright scope: every section covered in class.
	- Except PCA in Chapter 7, Heat equations in 2 dimensions.
	- ▶ 4 Questions from Part I, 2 Questions from Part II.
- \triangleright cheat sheet: one-page/one-sided cheat sheet.
- \blacktriangleright background:
	- \triangleright Basic knowledge integrating simple functions (exponential, trigonometric functions, polynomials)
	- \blacktriangleright Basic trigonometric identities.
	- \triangleright Basic knowledge of complex numbers.
- \triangleright OH: M: 12:15-1:00PM, 4:10-5:30PM, W: 4:10-5:30PM, F: 12:30-2:00PM.

KORKAR KERKER E VOOR

Formula for final grade

- \blacktriangleright Weekly home work sets; Count best 10, total 15 points.
- ▶ Weekly Quizzes; Count best 10, total 15 points.
- \blacktriangleright Two midterm exams: the worse is 15 points, the better 25 points.

KORKA SERKER ORA

 \blacktriangleright 1 final exam, 30 points.

Formula for final grade

- \blacktriangleright Weekly home work sets; Count best 10, total 15 points.
- \triangleright Weekly Quizzes; Count best 10, total 15 points.
- \blacktriangleright Two midterm exams: the worse is 15 points, the better 25 points.
- \blacktriangleright 1 final exam, 30 points.
- If you miss one midterm, your other midterm and the final will be worth 30 and 40 points, respectively.

KORKA SERKER ORA

Grade Scale

- \triangleright **A** to **A**+: at least 85 points;
- \triangleright B- to B+: between 70 and 85 points;
- \triangleright **C** to C +: between 60 and 70 points;
- \triangleright **D**: between 55 and 60 points;
- \blacktriangleright F: less than 55 points.

Typically over $2/3$ of class receives B level grades or above.

KORKA SERKER ORA

- \blacktriangleright No need to go beyond the book
- \triangleright Best to go beyond homework: practice your skills with exercises in the book
- \blacktriangleright Exam problems are either taken or modified from the book.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Problem distribution

- \triangleright One question from Chapter 1 through Chapter 3: Linear algebra, Matrix algebra, Determinants
- \triangleright One question from Chapter 4: Vector Spaces
- \triangleright One question from Chapter 6: Least Squares
- \triangleright One question from Chapters 5 and 7: Eigenvalues and SVD
- ▶ One question from Chapters 4 and 9: Linear ODEs
- \triangleright One question from Chapter 10: Fourier Analysis and Heat equation

KORK STRATER STRAKER

Sample Problem 1: (Problem 17, p. 90)

Explain why a set $\{v_1, v_2, v_3, v_4\}$ in \mathcal{R}^5 must be linearly independent when $\{v_1, v_2, v_3\}$ is linearly independent and $\mathsf{v}_4 \not\in \mathsf{Span}\,\{\mathsf{v}_1,\,\mathsf{v}_2,\,\mathsf{v}_3\}.$

KORKAR KERKER E VOOR

Sample Problem 1: (Problem 17, p. 90)

Explain why a set $\{v_1, v_2, v_3, v_4\}$ in \mathcal{R}^5 must be linearly independent when $\{v_1, v_2, v_3\}$ is linearly independent and $v_4 \notin$ Span { v_1, v_2, v_3 }.

SOLUTION: We prove the claim by contradiction. Assume that $\{v_1, v_2, v_3, v_4\}$ in \mathcal{R}^5 was linearly dependent. Then there would be constants c_1, \dots, c_4 , not all of which were 0, such that

$$
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = \mathbf{0}. \quad (\ell)
$$

There are two cases to consider in equation (ℓ)

If $c_4 = 0$, then (ℓ) would become

$$
c_1\, {\bm v}_1 + c_2\, {\bm v}_2 + c_3\, {\bm v}_3 = {\bm 0},
$$

for some constants c_1, c_2, c_3 , not all of which were 0, which contradicts the assumption that $\{v_1, v_2, v_3\}$ is linearly independent.

KID KA KERKER KID KO

Sample Problem 1: (Problem 17, p. 90)

Explain why a set $\{v_1, v_2, v_3, v_4\}$ in \mathcal{R}^5 must be linearly independent when $\{v_1, v_2, v_3\}$ is linearly independent and $v_4 \notin$ Span { v_1, v_2, v_3 }.

SOLUTION: We prove the claim by contradiction. Assume that $\{v_1, v_2, v_3, v_4\}$ in \mathcal{R}^5 was linearly dependent. Then there would be constants c_1, \dots, c_4 , not all of which were 0, such that

$$
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = \mathbf{0}. \quad (\ell)
$$

There are two cases to consider in equation (ℓ)

If $c_4 \neq 0$, then (ℓ) would become

$$
\mathbf{v}_4 = -\frac{1}{c_4} (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3),
$$

which contradicts the assumption that

$$
\textbf{v}_4\not\in\text{Span}\,\{\textbf{v}_1,\,\textbf{v}_2,\,\textbf{v}_3\}.
$$

Thus equation (ℓ) can't be true, meaning $\{v_1, v_2, v_3, v_4\}$ must be linearly independent.**KORK (FRAGE) EL POLO** Sample Problem 2: (Problem 5, p. 265)

Consider the polynomials

$$
\begin{array}{rcl}\n\mathbf{p}_1(t) & = & 1+t, & \mathbf{p}_2(t) = 1-t, & \mathbf{p}_3(t) = 4, \\
\mathbf{p}_4(t) & = & t+t^2, & \mathbf{p}_5(t) = 1+2t+t^2.\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let H be the subspace of P_3 spanned by the set $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5}$. Construct a basis for H. Sample Problem 2: (Problem 5, p. 265)

Consider the polynomials

$$
\begin{array}{rcl}\n\mathbf{p}_1(t) & = & 1+t, & \mathbf{p}_2(t) = 1-t, & \mathbf{p}_3(t) = 4, \\
\mathbf{p}_4(t) & = & t+t^2, & \mathbf{p}_5(t) = 1+2t+t^2.\n\end{array}
$$

Let H be the subspace of \mathcal{P}_3 spanned by the set $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5}$. Construct a basis for H. SOLUTION: We will construct a basis for H step-by-step:

- \triangleright Since $p_1 \neq 0$, it is linearly independent.
- \triangleright **p**₁ and **p**₂ are not multiples of each other, so {**p**₁, **p**₂} is linearly independent.
- $\mathbf{p}_3 = 2 \mathbf{p}_1 + 2 \mathbf{p}_2$, so we ignore \mathbf{p}_3 for basis construction.
- \triangleright **p**₄ is not a linear combination of **p**₁ and **p**₂ since neither contains the monomial t^2 . so $\{ {\mathsf p}_1, \, {\mathsf p}_2, \, {\mathsf p}_4 \}$ is linearly independent.

 \bullet $\mathbf{p}_5 = \mathbf{p}_1 + \mathbf{p}_4$, so we ignore \mathbf{p}_5 for basis construction.

Thus one basis for H is $\{p_1, p_2, p_4\}$.

Sample Problem 3: (Problem 19, p. 369)

Let $A \in \mathcal{R}^{m \times n}$. Show that NUL $A = \text{NUL } A^T A$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Sample Problem 3: (Problem 19, p. 369)

Let $A \in \mathcal{R}^{m \times n}$. Show that NUL $A = \text{NUL } A^T A$. $\text{SOLUTION: We will show that } \text{NUL } A \subseteq \text{NUL } A^{\mathsf{T}} \, A$ and $\mathrm{NuL}\:A^{\mathcal{T}}\:A\subseteq\mathrm{NuL}\:A$ so they must be the same set.

- \blacktriangleright Let $\mathsf{x}\in\text{NUL}$ A so that $A\,\mathsf{x}=\mathsf{0}.$ This means $A^T\,A\,\mathsf{x}=\mathsf{0},$ or that $\mathbf{x} \in \text{NUL } A^{\mathcal{T}} A$. Thus, $\text{NUL } A \subseteq \text{NUL } A^{\mathcal{T}} A$.
- \blacktriangleright Let $\mathbf{x} \in \text{NUL } A^T A$ so that $A^T A \mathbf{x} = \mathbf{0}$. This means $\mathbf{x}^T\,A^T\,A\,\mathbf{x}=0,$ or that $\|A\,\mathbf{x}\|^2=0.$ Therefore $A\,\mathbf{x}=\mathbf{0}$ and $\mathbf{x} \in \text{NUL } A$. Thus, $\text{NUL } A^T A \subseteq \text{NUL } A \quad \Box$.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 PM

Sample Problem 4: Compute the SVD $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & 6 \end{pmatrix}$ 8 7 −2). Eigenvalues of $A^T A$: $\lambda_1 = 360, \lambda_2 = 90, \lambda_3 = 0$,

unit eigenvectors $\mathbf{v}_1 = \frac{1}{2}$ 3 $\sqrt{ }$ \mathcal{L} 1 2 2 \setminus $\Big\}$, $\mathbf{v}_2 = \frac{1}{3}$ 3 $\sqrt{ }$ \mathcal{L} -2 −1 2 \setminus $\Bigg), \quad \mathsf{v}_3 = \frac{1}{3}$ 3 $\sqrt{ }$ \mathcal{L} 2 -2 1 \setminus $\vert \cdot$

$$
Av_1 = \sqrt{360} u_1
$$
, $Av_2 = \sqrt{90} u_2$, $, Av_3 = 0$.
where $u_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $u_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

Putting together

$$
A(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = (\sqrt{360} \mathbf{u}_1, \sqrt{90} \mathbf{u}_2, \mathbf{0}) = (\mathbf{u}_1, \mathbf{u}_2) (\begin{array}{cc} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{array}).
$$

Therefore $A = (\mathbf{u}_1, \mathbf{u}_2) (\begin{array}{cc} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{array}) (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)^T.$

.

Sample Problem 5: Problem 7, p. 191

Find a general solution to the ODE:

$$
y'' + 4y' + 4y = e^{-2t} \ln t. \quad (\ell)
$$

SOLUTION: The homogeneous equation implied by (ℓ) is

$$
y'' + 4y' + 4y = 0. \quad (\ell_1)
$$

The auxiliary equation to (ℓ_1) is $r^2 + 4$ $r + 4 = 0$, which has a double root $r = -2$. Therefore two linearly independent solutions to (ℓ_1) are $y_1\left(t\right) = e^{-2\,t}$ and $y_2\left(t\right) = t\,e^{-2\,t}.$ Their Wronskian is

$$
\begin{array}{rcl}\n\textbf{Wron } [y_1, y_2] \, (t) & = & \det \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \\
& = & \det \begin{vmatrix} e^{-2t} & t \cdot e^{-2t} \\ -2 \cdot e^{-2t} & e^{-2t} - 2 \cdot t \cdot e^{-2t} \end{vmatrix} = e^{-4t}.\n\end{array}
$$

KORKAR KERKER EL VOLO

Sample Problem 5: Problem 7, p. 191

Find a general solution to the ODE:

$$
y'' + 4y' + 4y = e^{-2t} \ln t. \quad (\ell)
$$

SOLUTION: The homogeneous equation implied by (ℓ) has two linearly independent solutions $y_1\left(t\right)=e^{-2\,t}$ and $y_2\left(t\right)=t\,{e}^{-2\,t}.$ Their Wronskian is

Wron
$$
[y_1, y_2]
$$
 $(t) = e^{-4t}$.

Now we seek a particular solution to (ℓ) in the form

$$
y_p(t) = v_1(t) y_1(t) + v_2(t) y_2(t)
$$
, where

$$
v_1(t) = -\int^t \frac{y_2(\tau) e^{-2\tau} \ln \tau d\tau}{\text{Wron } [y_1, y_2](\tau)} = -\int^t \tau \ln \tau d\tau = c_1 - \frac{t^2}{2} \ln \frac{t}{\sqrt{e}},
$$

\n
$$
v_2(t) = \int^t \frac{y_1(\tau) e^{-2\tau} \ln \tau d\tau}{\text{Wron } [y_1, y_2](\tau)} = \int^t \ln \tau d\tau = c_2 + t \ln \frac{t}{e}.
$$

\nGeneral solution is $y(t) = (c_1 + c_2 t) e^{-2t} + \left(\frac{t^2}{2} \ln \frac{t}{e\sqrt{e}}\right) e^{-2t}.$

 \triangleright Compute the Fourier cosine series for the given function $f(x) = \sin(x)$ on $[0, \pi]$. \blacktriangleright Find a formal solution to ∂u $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ $\frac{\partial}{\partial x^2}$, 0 < x < π , t > 0. $u(x, 0) = \sin(x) \quad \forall x \in [0, \pi]; \quad \frac{\partial u}{\partial x}(0, t) = 0 = \frac{\partial u}{\partial x}(\pi, t) \quad \forall t > 0.$

KORKA SERKER ORA

\n- Compute the Fourier cosine series for the given function\n
$$
f(x) = \sin(x)
$$
 on $[0, \pi]$.\n
\n- Find a formal solution to\n $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, \n $0 < x < \pi$, \n $t > 0$.\n
\n- $u(x, 0) = \sin(x) \quad \forall \, x \in [0, \pi]$; \n $\frac{\partial u}{\partial x}(0, t) = 0 = \frac{\partial u}{\partial x}(\pi, t) \quad \forall \, t > 0$.\n
\n- SOLUTION:
\n

 \blacktriangleright The Fourier cosine series

$$
\widetilde{S}(x) = \frac{\widetilde{a}_0}{2} + \sum_{n=1}^{\infty} \widetilde{a}_n \cos(x), \text{ where for } n = 0, 1, \cdots,
$$

$$
\widetilde{a}_n = \frac{2}{\pi} \int_0^{\pi} \sin(x) \cos(nx) dx = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ -\frac{4}{\pi (n+1)(n-1)}, & \text{if } n \text{ is even,} \end{cases}
$$

$$
\widetilde{S}(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n+1)(2n-1)}
$$

- \triangleright Compute the Fourier cosine series for the given function $f(x) = \sin(x)$ on $[0, \pi]$.
- \blacktriangleright Find a formal solution to

$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \quad t > 0.
$$
\n
$$
u(x,0) = \sin(x) \quad \forall \ x \in [0,\pi]; \quad \frac{\partial u}{\partial x}(0,t) = 0 = \frac{\partial u}{\partial x}(\pi,t) \quad \forall \ t > 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \triangleright Compute the Fourier cosine series for the given function $f(x) = \sin(x)$ on $[0, \pi]$.
- \blacktriangleright Find a formal solution to

$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \quad t > 0.
$$
\n
$$
u(x,0) = \sin(x) \quad \forall \ x \in [0,\pi]; \quad \frac{\partial u}{\partial x}(0,t) = 0 = \frac{\partial u}{\partial x}(\pi,t) \quad \forall \ t > 0.
$$

SOLUTION:

 \blacktriangleright The formal solution to heat equation is

$$
u(x,t) \sim \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2 n x)}{(2 n + 1) (2 n - 1)} e^{-4 n^2 t}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어