Final Exam in a nutshell

- ▶ time: Tuesday, May 14, from 7:00-10:00PM, in Pimentel 1.
 - ► **DSP time:** Tuesday, May 14, from 4:00-10:00PM in 1015 Evans Hall, with DSP letter only.
- scope: every section covered in class.
 - Except PCA in Chapter 7, Heat equations in 2 dimensions.
 - ▶ 4 Questions from Part I, 2 Questions from Part II.
- cheat sheet: one-page/one-sided cheat sheet.
- background:
 - Basic knowledge integrating simple functions (exponential, trigonometric functions, polynomials)

- Basic trigonometric identities.
- Basic knowledge of complex numbers.
- OH: M: 12:15-1:00PM, 4:10-5:30PM, W: 4:10-5:30PM, F: 12:30-2:00PM.

Formula for final grade

- Weekly home work sets;
 Count best 10, total 15 points.
- Weekly Quizzes; Count best 10, total 15 points.
- Two midterm exams: the worse is 15 points, the better 25 points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 final exam, 30 points.

Formula for final grade

- Weekly home work sets;
 Count best 10, total 15 points.
- Weekly Quizzes; Count best 10, total 15 points.
- Two midterm exams: the worse is 15 points, the better 25 points.
- 1 final exam, 30 points.
- If you miss one midterm, your other midterm and the final will be worth 30 and 40 points, respectively.

Grade Scale

- ► A- to A+: at least 85 points;
- ▶ B- to B+: between 70 and 85 points;
- ► C- to C+: between 60 and 70 points;
- ▶ D: between 55 and 60 points;
- ► F: less than 55 points.

Typically over 2/3 of class receives *B* level grades or above.

- No need to go beyond the book
- Best to go beyond homework: practice your skills with exercises in the book
- Exam problems are either taken or modified from the book.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem distribution

- One question from Chapter 1 through Chapter 3: Linear algebra, Matrix algebra, Determinants
- One question from Chapter 4: Vector Spaces
- One question from Chapter 6: Least Squares
- One question from Chapters 5 and 7: Eigenvalues and SVD
- One question from Chapters 4 and 9: Linear ODEs
- One question from Chapter 10: Fourier Analysis and Heat equation

Sample Problem 1: (Problem 17, p. 90)

Explain why a set {**v**₁, **v**₂, **v**₃, **v**₄} in \mathcal{R}^5 must be linearly independent when {**v**₁, **v**₂, **v**₃} is linearly independent and **v**₄ \notin **Span** {**v**₁, **v**₂, **v**₃}.

Sample Problem 1: (Problem 17, p. 90)

Explain why a set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathcal{R}^5 must be linearly independent when $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent and $\mathbf{v}_4 \notin \mathbf{Span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

SOLUTION: We prove the claim by contradiction. Assume that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathcal{R}^5 was linearly dependent. Then there would be constants c_1, \dots, c_4 , not all of which were 0, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = \mathbf{0}.$$
 (ℓ)

There are two cases to consider in equation (ℓ)

• If $c_4 = 0$, then (ℓ) would become

$$c_1 \, \mathbf{v}_1 + c_2 \, \mathbf{v}_2 + c_3 \, \mathbf{v}_3 = \mathbf{0},$$

for some constants c_1, c_2, c_3 , not all of which were 0, which contradicts the assumption that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Sample Problem 1: (Problem 17, p. 90)

Explain why a set {**v**₁, **v**₂, **v**₃, **v**₄} in \mathcal{R}^5 must be linearly independent when {**v**₁, **v**₂, **v**₃} is linearly independent and **v**₄ \notin **Span** {**v**₁, **v**₂, **v**₃}.

SOLUTION: We prove the claim by contradiction. Assume that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ in \mathcal{R}^5 was linearly dependent. Then there would be constants c_1, \dots, c_4 , not all of which were 0, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4 = \mathbf{0}.$$
 (ℓ)

There are two cases to consider in equation (ℓ)

• If $c_4 \neq 0$, then (ℓ) would become

$$\mathbf{v}_4 = -rac{1}{c_4} \left(c_1 \, \mathbf{v}_1 + c_2 \, \mathbf{v}_2 + c_3 \, \mathbf{v}_3
ight),$$

which contradicts the assumption that

$$\mathbf{v}_4 \not\in \mathbf{Span} \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3\}.$$

Thus equation (ℓ) can't be true, meaning { v_1 , v_2 , v_3 , v_4 } must be linearly independent.

Sample Problem 2: (Problem 5, p. 265)

Consider the polynomials

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let *H* be the subspace of \mathcal{P}_3 spanned by the set $\mathcal{S} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5\}$. Construct a basis for *H*.

Sample Problem 2: (Problem 5, p. 265)

Consider the polynomials

Let *H* be the subspace of \mathcal{P}_3 spanned by the set $\mathcal{S} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4, \mathbf{p}_5\}$. Construct a basis for *H*. SOLUTION: We will construct a basis for *H* step-by-step:

- Since $\mathbf{p}_1 \neq \mathbf{0}$, it is linearly independent.
- ▶ p₁ and p₂ are not multiples of each other, so {p₁, p₂} is linearly independent.
- $\mathbf{p}_3 = 2 \, \mathbf{p}_1 + 2 \, \mathbf{p}_2$, so we ignore \mathbf{p}_3 for basis construction.
- ▶ p₄ is not a linear combination of p₁ and p₂ since neither contains the monomial t². so {p₁, p₂, p₄} is linearly independent.

くしゃ ふゆ きょう かい ひょう くしゃ

• $\mathbf{p}_5 = \mathbf{p}_1 + \mathbf{p}_4$, so we ignore \mathbf{p}_5 for basis construction.

Thus one basis for H is $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_4\}$.

Sample Problem 3: (Problem 19, p. 369)

Let $A \in \mathcal{R}^{m \times n}$. Show that NUL A =NUL $A^T A$.

・ロト・日本・モト・モート ヨー うへで

Sample Problem 3: (Problem 19, p. 369)

Let $A \in \mathcal{R}^{m \times n}$. Show that NUL $A = \text{NUL } A^T A$. SOLUTION: We will show that NUL $A \subseteq \text{NUL } A^T A$ and NUL $A^T A \subseteq \text{NUL } A$ so they must be the same set.

- ▶ Let $\mathbf{x} \in \text{NUL } A$ so that $A\mathbf{x} = \mathbf{0}$. This means $A^T A \mathbf{x} = \mathbf{0}$, or that $\mathbf{x} \in \text{NUL } A^T A$. Thus, NUL $A \subseteq \text{NUL } A^T A$.
- ▶ Let $\mathbf{x} \in \text{NUL } A^T A$ so that $A^T A \mathbf{x} = \mathbf{0}$. This means $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$, or that $||A\mathbf{x}||^2 = 0$. Therefore $A\mathbf{x} = \mathbf{0}$ and $\mathbf{x} \in \text{NUL } A$. Thus, $\text{NUL } A^T A \subseteq \text{NUL } A \square$.

Sample Problem 4: Compute the SVD $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$. Eigenvalues of $A^T A$: $\lambda_1 = 360, \lambda_2 = 90, \lambda_3 = 0$,

unit eigenvectors $\mathbf{v}_1 = \frac{1}{3} \begin{pmatrix} 1\\2\\2 \end{pmatrix}$, $\mathbf{v}_2 = \frac{1}{3} \begin{pmatrix} -2\\-1\\2 \end{pmatrix}$, $\mathbf{v}_3 = \frac{1}{3} \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$.

$$A \mathbf{v}_1 = \sqrt{360} \mathbf{u}_1, \quad A \mathbf{v}_2 = \sqrt{90} \mathbf{u}_2, \quad , A \mathbf{v}_3 = \mathbf{0}.$$

where $\mathbf{u}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1 \end{pmatrix}, \quad \mathbf{u}_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\-3 \end{pmatrix}.$

Putting together

$$A(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}) = \left(\sqrt{360} \, \mathbf{u}_{1}, \sqrt{90} \, \mathbf{u}_{2}, \mathbf{0}\right) = (\mathbf{u}_{1}, \mathbf{u}_{2}) \left(\begin{array}{cc}\sqrt{360} & 0 & 0\\ 0 & \sqrt{90} & 0\end{array}\right).$$

Therefore $A = (\mathbf{u}_{1}, \mathbf{u}_{2}) \left(\begin{array}{cc}\sqrt{360} & 0 & 0\\ 0 & \sqrt{90} & 0\end{array}\right) (\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3})^{T}.$

Sample Problem 5: Problem 7, p. 191

Find a general solution to the ODE:

$$y'' + 4y' + 4y = e^{-2t} \ln t.$$
 (ℓ)

SOLUTION: The homogeneous equation implied by (ℓ) is

$$y'' + 4y' + 4y = 0.$$
 (ℓ_1)

The auxiliary equation to (ℓ_1) is $r^2 + 4r + 4 = 0$, which has a double root r = -2. Therefore two linearly independent solutions to (ℓ_1) are $y_1(t) = e^{-2t}$ and $y_2(t) = t e^{-2t}$. Their Wronskian is

Wron
$$[y_1, y_2](t) = \det \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$

= $\det \begin{vmatrix} e^{-2t} & t e^{-2t} \\ -2e^{-2t} & e^{-2t} - 2t e^{-2t} \end{vmatrix} = e^{-4t}$

Sample Problem 5: Problem 7, p. 191

Find a general solution to the ODE:

$$y'' + 4y' + 4y = e^{-2t} \ln t.$$
 (l)

SOLUTION: The homogeneous equation implied by (ℓ) has two linearly independent solutions $y_1(t) = e^{-2t}$ and $y_2(t) = t e^{-2t}$. Their Wronskian is

Wron
$$[y_1, y_2](t) = e^{-4t}$$
.

Now we seek a particular solution to (ℓ) in the form

$$y_{p}(t) = v_{1}(t) y_{1}(t) + v_{2}(t) y_{2}(t), \text{ where}$$

$$v_{1}(t) = -\int^{t} \frac{y_{2}(\tau) e^{-2\tau} \ln \tau \, d\tau}{\operatorname{Wron} [y_{1}, y_{2}](\tau)} = -\int^{t} \tau \ln \tau \, d\tau = c_{1} - \frac{t^{2}}{2} \ln \frac{t}{\sqrt{e}},$$

$$v_{2}(t) = \int^{t} \frac{y_{1}(\tau) e^{-2\tau} \ln \tau \, d\tau}{\operatorname{Wron} [y_{1}, y_{2}](\tau)} = \int^{t} \ln \tau \, d\tau = c_{2} + t \ln \frac{t}{e}.$$

General solution is $y(t) = (c_1 + c_2 t) e^{-2t} + \left(\frac{t^2}{2} \ln \frac{t}{e \sqrt{e}}\right) e^{-2t}$.

 Compute the Fourier cosine series for the given function f(x) = sin(x) on [0, π].
 Find a formal solution to ∂u/∂t = ∂²u/∂x², 0 < x < π, t > 0.

 u(x,0) = sin(x) ∀ x ∈ [0, π]; ∂u/∂x (0, t) = 0 = ∂u/∂x (π, t) ∀ t > 0.

и

► The Fourier cosine series

$$\widetilde{S}(x) = \frac{\widetilde{a}_0}{2} + \sum_{n=1}^{\infty} \widetilde{a}_n \cos(x)$$
, where for $n = 0, 1, \cdots$,

$$\widetilde{a}_{n} = \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(nx) \, dx = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ -\frac{4}{\pi(n+1)(n-1)}, & \text{if } n \text{ is even,} \end{cases}$$
$$\widetilde{S}(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n+1)(2n-1)}.$$

- Compute the Fourier cosine series for the given function f(x) = sin(x) on $[0, \pi]$.
- Find a formal solution to

$$\begin{array}{rcl} \displaystyle \frac{\partial u}{\partial t} & = & \displaystyle \frac{\partial^2 u}{\partial x^2}, & 0 < x < \pi, & t > 0. \\ \displaystyle u\left(x,0\right) & = & \displaystyle \sin(x) & \forall \ x \in [0,\pi]; & \displaystyle \frac{\partial u}{\partial x}\left(0,t\right) = 0 = \displaystyle \frac{\partial u}{\partial x}\left(\pi,t\right) & \forall \ t > 0. \end{array}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

- Compute the Fourier cosine series for the given function f(x) = sin(x) on $[0, \pi]$.
- Find a formal solution to

$$\begin{array}{rcl} \displaystyle \frac{\partial u}{\partial t} & = & \displaystyle \frac{\partial^2 u}{\partial x^2}, & 0 < x < \pi, & t > 0. \\ \displaystyle u\left(x,0\right) & = & \displaystyle \sin(x) & \forall \ x \in [0,\pi]; & \displaystyle \frac{\partial u}{\partial x}\left(0,t\right) = 0 = \displaystyle \frac{\partial u}{\partial x}\left(\pi,t\right) & \forall \ t > 0. \end{array}$$

SOLUTION:

The formal solution to heat equation is

$$u(x,t) \sim \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n+1)(2n-1)} e^{-4n^2t}$$