Chap. 9 Matrix Methods for Linear Systems

Predator-Prey equations

d

gt = axBxy
dy = dxy—
dr y="Yy.

> X, y: prey, predator populations.
> «, B, 0, v: positive parameters, describing population
interactions.

Prey-Predator Cycles

Periodic activity generated by the Predator-Prey model.
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> «, B, 0, v: positive parameters, describing population
interactions.
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Proy-Predator dynamics as deseribed by the level curves of a conserved quantity. The arrows
describe the velocity and direction of solutions. In this simulation, the data
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§9.1 Introduction (I)

System of linear equations

dx

T = _4x+2
dy

L = 4x—2y.
dt XTey

In matrix form

x' = Ax, where xdg(x), A‘ﬁf(_i



§9.1 Introduction (Il)

System of linear equations

X = 2x1+t?xo + (cost) xs,
x; = (t+sint) x+3tx+ (e') x3,
xé = —X1+ X2+ X3.

In matrix form

[ o 2 t2 cost
where x= [ xo |, A(t)E | t+sint 3t et

X3 1 11



§9.1 Introduction (I11)

unoxy” 4+ b xy' +  _k_ xy = Fext(t), (¢)
inertia damping stiffness

To turn (¢) into system of linear equations, note that y” = (y')' so
that (¢) becomes

(y/)/ _ _% (y/) . %y#— Fext(t)'



§9.1 Introduction (IV)

Coupled mass—spring oscillator

d? x
W = —6X+2y,
d’y
k]=4 k2=2
— 2k —ow—| Ik
: :
| |
:x>0 :y>0
| |
| I
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§9.1 Introduction (IV)

Coupled mass—spring oscillator

d? x
2 W = —6X -+ 2y,
d’y
X1
To turn system (¢) into first order equations, let x = f ,
3
X4

where x3 =X, xp = X{, X3 =y, X4 = X5.

0 1 0 O

;o : df | =3 0 1 0

System ({) becomes x' = Ax, with A= 0 0 0 1
2 0 -2 0



§9.4 Linear systems in normal form

System of n linear differential equations in normal form

X (t) = A(t) x(t) +f(t), x(t),f(t)eR", A(t)cR™"

IVP for system of ODEs:  x'(t) = A(t) x(t)+f(t),

X (to) = Xq.
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§9.4 Linear systems in normal form

System of n linear differential equations in normal form

X (t) = A(t) x(t) +f(t), x(t),f(t)eR", A(t)cR™"

IVP for system of ODEs:  x'(t) = A(t) x(t)+f(t), x(to) = xo.

Thm. 2, Existence and Uniqueness: Suppose A(t) and f (t) are
continuous on an open interval / that contains tg. Then, for any
initial vector xg, there exists a unique solution x (t) on / to IVP.



Linear Dependence of Vector Functions

Definition 1. The m vector functions x1 (t),- - ,Xxm (t) € R" are
linearly dependent on an interval [ if there exist constants
ci, - ,Cm, not all zero, such that

axi(t)+- +cmxm(t)=0, foralltel.

Otherwise, they are linearly independent on /.
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Linear Dependence of Vector Functions

Definition 1. The m vector functions x1 (t),- - ,Xxm (t) € R" are
linearly dependent on an interval [ if there exist constants
ci, - ,Cm, not all zero, such that

axi(t)+- +cmxm(t)=0, foralltel.

Otherwise, they are linearly independent on /.

|t t
Example: Show that x; (t) = t |, x(t)=1 [t| | linearly
1 1
dependent on /; = [0, 1], linearly independent on /, = [—1, 1]
» On /1 =[0,1], x2(t) — x1 (t) = 0, thus they are linearly

dependent.

» On h =[-1,1], let c1 x2 (t) + c2x1 (t) = 0. Then
a |tl+t=0fort==+1. Thus ¢ = ¢ =0.

33



Definition 2. The Wronskian of n vector functions
x1(t), - ,xp(t) €R"is

Wxi, -, xq] (£) & det (x (£), -+, %0 (£)).

Thus, x1 (t), -+ ,x,(t) are linearly independent on interval / if
W [xq, -+, Xp] (t) # 0 for any t € I.

10/33



Definition 2. The Wronskian of n vector functions
x1(t), - ,xp(t) €R"is

Wxi, -, xq] (£) & det (x (£), -+, %0 (£)).
Thus, x1 (t), -+ ,x,(t) are linearly independent on interval / if
W [xq, -+, Xp] (t) # 0 for any t € I.

» Example 1: x; (t) = ( ttz ) , X2 (t) = ( ; ) linearly

independent since W [x1, xp] (t) = t2 — t3 £ 0.
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Definition 2. The Wronskian of n vector functions
x1(t), - ,xp(t) €R"is

Wxi, -, xq] (£) & det (x (£), -+, %0 (£)).
Thus, x1 (t), -+ ,x,(t) are linearly independent on interval / if
W [xq, -+, Xp] (t) # 0 for any t € I.

» Example 1: x; (t) = ( ttz ) , X2 (t) = ( ; ) linearly

independent since W [x1, xp] (t) = t2 — t3 £ 0.

» Example 2: x; (t) = ( ‘i| ), x2 (t) = ( |; ) linearly
independent on f, = [—1, 1], but W [x1, x2] (t) = 0.
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Representation of Solutions

Thm. 3. Let x; (t), -, X, (t) be n linearly independent solutions
to the homogeneous system

X' (t) =A(t) x(t), x(t)eR", A(t) e R™" ()

on interval /, where A(t) is a matrix function continuous on /.
Then every solution to (£) on / can be expressed in the form

o]

x(t) = (xa(t), - xa () | 1 |,

Cn

where ¢y, - -+, ¢, are constants.
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Example. Verify that

12/33



Example. Verify that

1
x1(t) = ( 1 ) e®t xy(t) =
1

are fundamental solution set for

SOLUTION:
X (t) = 2x(t),
X (1) = —x2(t),
Xg(t) = _X3(t)7

The Wronskian is
W[X].? X2, X3] (t) =



Representation of Solutions: Thm. 4.

> Let x1(t), - ,xn(t) be n linearly independent solutions to
X (t)=A(t) x(t), x(t)eR", A(t)e R™" (1)

on interval /, where A(t) is continuous on /.

> Let x, (t) be a particular solution to nonhomogeneous system
X' (t) = A(t) x(t)+f(t), f(t)€R" continuouson /. (f2)

Then every solution to (¢2) on [ is in the form

where ¢y, - -+, ¢, are constants.
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Homogeneous system, constant coefficients

X (t) = Ax(t), x(t)eR", AecR™" (0

» Assume solution in form x(t) = e*tu, u # 0. Then

X (t)=Xue*, and Ax(t)=Auelt

> A, u must be eigenvalue-eigenvector pair:

= Au=JAu, u#0.

14 /33



Homogeneous system, constant coefficients

X (t) = Ax(t), x(t)eR", AecR™" (0
» Assume solution in form x(t) = e*tu, u # 0. Then
X (t)=Xue*, and Ax(t)=Auelt

> A, u must be eigenvalue-eigenvector pair:

= Au=JAu, u#0.

011
Example. Let A= 1 0 1 | in (¢). Its eigenvalues are
110

A1 =2, 2 = —1, A3 = —1, with corresponding eigenvectors
1 -1 0
ui (t): 1 R U2(t): 0 R U3(t): 1

14 /33



Homogeneous system, constant coefficients

X (t) = Ax(t), x(t)eR", AecR™" (0
» Assume solution in form x(t) = e*tu, u # 0. Then
X (t) = ue*t, and Ax(t)=Auel.

> A, u must be eigenvalue-eigenvector pair:

= Au=Au, u#0.

011
Example. Let A= 1 0 1 | in (¢). Fundamental solution set
110
1 -1 0
x1 (t) 1| €% xo(t) = 0 | ef x3(t)= 1 | et
1 1
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Diagonalizable, homogeneous, constant coef. (559.5-6, 5.7)

X (1) = Ax(t), x(t)eR", AeR™" (f1)
> Assume A is diagonalizable:

A=UANUY, U= (ug, ---,u,), A=diag(\1, -, \n).

» General solution to (/1)
_ At Ant
x(t)=cetfur+--+ cretu, (b)

> If A has n distinct eigenvalues, then A is diagonalizable.

> If Ais symmetric, then A is diagonalizable.
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Example I: Plot dynamical system trajectory:

X (t) = Ax(£), A:<_i'5 0_?) x(0) =xo (V)

v

A is diagonalizable with eigenvalues \; = —0.5, \» = —2:

Avi = A1 vy, V1=<;>7 Avy = A v, V2=<_11>-

A1 A2

v

General solution to (¢) : x(t) = c1 eMtvy + cpe™?tvy.
c1, ¢ determined by xo : x(0) = c1v1 + 2 v2 = Xo.
General solution decays to 0 because A1 < 0, A» < 0.
(0 is attractor)

vy
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Example I: Plot dynamical system trajectory:

X (t) = Ax(£), A:<_i'5 0_?) x(0) =xo (V)

> A is diagonalizable with eigenvalues \; = —0.5, \p = —2:
1 -1
Avi = A1vy, v = ( 2), Avy = Ao v, V2:< i >
» General solution to (£) : x(t) = c; eM vy + e tv,.
> ¢y, ¢ determined by xo : x(0) = c1v1 + 2 v2 = Xo.
» General solution decays to 0 because A1 < 0, A\» < 0.

(0 is attractor)
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Example 1l: Plot dynamical system trajectory:

X (£) = Ax(t), A= ( 7 ) x(0) = xo (£)
> A is diagonalizable with eigenvalues A\; = 6, A\, = —1:
Avi = A1vy, vi = ( _25>, Avyr = Ao vp, Vvp = < 1 >
» General solution to (£) : x (t) = c; M vy + ety

v

c1, ¢ determined by xo : x(0) = c1v1 + 2 v2 = Xo.
0 is saddle because A\; > 0, A> < 0.

v
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Example 1l: Plot dynamical system trajectory:

X () = Ax (1), A:<_42 _15) x(0) = xo (£)

> A is diagonalizable with eigenvalues A\; = 6, A\, = —1:

Avi = A1 vy, V1=<_25>7 Avy = Ao, V2=(1>-

A1 A2

» General solution to (¢) : x(t) = cpe™tvi + cp ety
> ¢y, ¢ determined by xo : x(0) = c1v1 + ¢ v2 = Xo.
» 0 is saddle because A\; > 0, A\» < 0.

FIGURE 3 The origin as a saddle point.
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9.6 Complex eigenvalues (1)

X (t) = Ax(t), x(t)eR", AcR™" (f)

» Assume solution in form x (t) = e*u, u # 0. Then \, u must
be eigenvalue-eigenvector pair:

= Au=JAu, u#0.
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9.6 Complex eigenvalues (1)

X (t) = Ax(t), x(t)eR", AcR™" (¢)

» Assume solution in form x (t) = e*u, u # 0. Then \, u must
be eigenvalue-eigenvector pair:

= Au=JAu, u#0.

» If \=a+if is complex, with i2 = —1 and 8 # 0, then
u=a+ i b must be complex, with b # 0.

» Since (—i)2 = —1, another eigenvalue must be A = oo — i 3,
and another eigenvectoru=a —ib

» x(t) = eu and X (t) = e 'u must both be solutions to (¢).
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§9.6 Complex eigenvalues (I1)

X (t) = Ax(t), x(t)eR", AcR™" (¢

» x(t) = e*tu is solution to (£) with A\=a + i3, u=a+ib.

x(t) = elThty= et (cos(Bt)+isin(Bt)) (a+ib)
= e*Y(cos(Bt)a—sin(3t) b)+ie* (sin(3t) a+cos(8t)b)
def _ ——
= i (b) + i owo(t)

» Equation (¢) becomes
wi () +iwh (t) = Aws (t) +iAwy (),
» which is two solutions to (¢),

wi(t) =Aws (t), wh(t)=Awy(t).



Complex eigenvalues: Example |
Find general solution to

X (t) = Ax(t), x(t)€R> A:(j _23> (0)

SOLUTION: eigenvalues of A= -2+ |,

A(5) (7)) ((5) (3
Therefore wy () = e 2! <cos(t) ( 2 ) —sin(t) <
wo(t) — e 2t <sin(t) < 2 > + cos (£) (

» general solution is

y(t) = cawi(t)+ wa(t)

Y <cos(t) ( e ) 1 sin(2) < e ))



Coupled mass—spring oscillator with fixed ends (1)

d? x
f771d—21 = —kix1+k (x2 —x1),
t
2
mz% —ka (2 — x1) — k3 x2,

where xj, xp are displacements of masses my, mo.

Figure 9.5 Coupled mass-spring system with fixed ends
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Coupled mass—spring oscillator with fixed ends (II)

d2

mthX; = —kixi+k (x—x),
d® x

m2d7t22 = —k (x2x—x1) — ks xe,

Xt 0o 1 0 0
/ _ktk gk Q
"(t) = i | A = m m
y (t) =Ay(t), with y o | A P
X} r% 0 —7/(2,—:2/(3

A only has imaginary eigenvalues i 31, £ i (s.
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Coupled mass—spring oscillator with fixed ends (llI)

1 o 1 0 0
kitko ko
/ . . . X:Il o - m 0 mil 0
Xé ko 0 — ko+ks 0
my my

A has imaginary eigenvalues £/ 31, =i 5. Compute 51, Bo for

my = mp = 1kg, ki = 1kg/sec?, ky = 2kg/sec?, k3 = 3kg/sec?.
SOLUTION:
0 1 0 O
| 30 2 0 _ 4 5 B
A= o 0 o 1| det(A—A/)=X\"4+8X"+11=0.
2 0 -5 0
Thus, A2 = —4 + /5.
51:\/4—\/§/sec, 52:\/4+\/§/S€C.
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Example 11l: Plot dynamical system trajectory:

X (t) = Ax(t), A:<I§ __2;3), x(0)=x0 (¢)

> A is diagonalizable with complex eigenvalues A = =2 + 5/
and eigenvectors ( izl > General solution to (¢):
B —sin(5t) ot cos(5t) ot
x(t) =a (2cos(5t)> ¢t 2sin(51t) ¢ -

> c1, ¢ determined by x¢ : x(0) = ¢ ( g ) + o ( (1) > = Xg.

» 0 is spiral point because of factor e 2¢.
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Example 11l: Plot dynamical system trajectory:

X () = Ax(t), A:<I§ __2;3), x(0) =xo ()

> A is diagonalizable with complex eigenvalues A = =2 + 5/
and eigenvectors ( izl > General solution to (¢):
B —sin(5t) ot cos(5t) ot
x(t) =a (2cos(5t)> ¢t 2sin(51t) ¢ -

> c1, ¢ determined by x¢ : x(0) = ¢ ( g ) + o ( (1) > = Xg.
2t

» 0 is spiral point because of factor e~
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§9.7 Representation of Solutions: Thm. 4.

> Let x1(t), -+ ,Xx,(t) be nlinearly independent solutions to
X' (t) = Ax(t), x(t)eR", AeR™". (4)
» Let x, (t) be a particular solution to nonhomogeneous system
X' (t) = Ax(t)+f(t), f(t)€R" continuous. (¢2)

Then every solution to (¢2) is in the form

x () = xp () + (1 (8), - xa (1) | ],

where ¢y, - -+ , ¢, are constants.

26 /33



Example I: Find general solution to

011 -1
X' (t) = Ax(t)+tg, with A=| 1 0 1 |, g= 0.
110 -2
SOLUTION:
» Fundamental solution set for x' (t) = Ax(t) is
1 -1 0
x1(t)=| 1 | %, xa(t) = 0 | ef x3(t)= 1 | e "
1 1 -1
» Seek particular solution x, (t) = ta+ b. (¢) becomes
a=A(ta+b)+tg.
1 L 1 L
Therefore a=—-A"lg= 3], b=A'la= -3
-1 4 5



Example I: Find general solution - - -

SOLUTION:
» Fundamental solution set for x' (t) = Ax(t) is
1 -1
xi(t)=[ 1 | €% xa(t) = 0 | e x3(t) = 1
1 1 -1
1 1
» Particular solution x, (t) = 5 3 | +3 | -
-1 5
» general solution to (¢)
1 1
t 1
-1 5
1 -1
+a [ 1] ft+o 0 | et+c
1 1
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Variation of parameters (1)
> Let x1(t), -+ ,Xx,(t) be nlinearly independent solutions to
X (t)=A(t) x(t), x(t)eR", A(t)e R™". (f)

» Seek particular solution x, (t) = (x1 (t), - ,xn(t)) - v (t) to
nonhomogeneous system

X' (t) =A(t) x(t) +f(t), f(t)€R" continuous. ({7)
» Equation (¢2) becomes
xp()=( xi(t) s xp(t) ) v(t)+(xa(t), - xn(t)) V(1)
= <A(t) x1(t), -+, A(t) x,,(t)> v (t)+f(t).
» Therefore (x1 (t), -+ ,x, (1)) -V (t) =f(t).

v = [ ) ) a7

xp(t) = (Xl(t)w--,xn(t))/(X1(T),~-7Xn(T))_1f(7)dT-
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Variation of parameters (Il)

Find the solution to IVP
X (t)=A(t) x(t)+f(t), f(t)eR", x(to)=x0 (f1)

SOLUTION: Let x1 (t),---,x,(t) be n linearly independent
solutions to

X (t)=A(t) x(t), x(t)eR", A(t)e R™". (l)

Solution to (¢1) has form

x(t) = (x(t),---,xa(t)) €
+(X1(t),-'wxn(t))/t (x1 (1), xa (7)) F(7) d T

x(to) = (x1(to), -+ .xn(t0)) €, =c=(x1(t0), xa(to)) " x(to)
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Variation of parameters (llI)
Find the solution to IVP
X (t)=A(t) x(t)+f(t), f(t)eR", x(to)=x0 (f1)

SOLUTION: Let x5 (t), - ,x,(t) be n linearly independent
solutions to

X (t)=A(t) x(t), x(t)eR", A(t)e R™". (l)

Solution to (¢1) has form
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Variation of parameters, Example

Solve x’(t)—(i :g>x(t)+<ezi>, x(O)—<_é>. (0)
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Variation of parameters, Example
Solve ' (t) = ( _— ) x(t)+< 62; ) x(0) = ( P ) (0)

t
SOLUTION: xi (t) = < 3:t > and x

d
. : , 3
independent solutions to X' (t) = o, )X (t).
(

Solution x(t) = (x1(t),x2(t)) ((x1 (0), %2 (0)) x(O))



Variation of parameters, Example
. 3et et 31\ '/ -1
Solution x(t) = ( of ot > < 11 ) < 0 )
N 3et et t/3e7 e\ '/ 7 J
et et ) ), e e’ 1 4
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Variation of parameters, Example

Solution x(t)

3et et 31\ '/ -1
et et 11 0
N 3et et t/3eT o7 \ [ 27 J
et et ) ), e e’ 1 4

173 et et -1
2 et et 1
_’_1 3et et t e —e7 7 d

2 et eft 0 _e3‘r + 3e” T
173 et et -1
2 et et 1
1/ 3e" et et et -2
2 et et _%e3t+3et_%

1 —27et —5et4+8e2t+18
6 —Qet —5et42e2t 412

_|_
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