Chap. 9 Matrix Methods for Linear Systems

Predator-Prey equations

$$\begin{array}{lll} \frac{d\,x}{d\,t} & = & \alpha\,x - \beta\,x\,y, \\ \frac{d\,y}{d\,t} & = & \delta\,x\,y - \gamma\,y. \end{array}$$

- x, y: prey, predator populations.
- $ightharpoonup \alpha$, β , δ , γ : positive parameters, describing population interactions.

Chap. 9 Matrix Methods for Linear Systems

Predator-Prey equations

$$\begin{array}{lll} \frac{d\,x}{d\,t} & = & \alpha\,x - \beta\,x\,y, \\ \frac{d\,y}{d\,t} & = & \delta\,x\,y - \gamma\,y. \end{array}$$

- x, y: prey, predator populations.
- \triangleright α , β , δ , γ : positive parameters, describing population interactions.

§9.1 Introduction (I)

System of linear equations

$$\frac{dx}{dt} = -4x + 2y,$$

$$\frac{dy}{dt} = 4x - 2y.$$

In matrix form

$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x} \stackrel{def}{=} \begin{pmatrix} x \\ y \end{pmatrix}$, $A \stackrel{def}{=} \begin{pmatrix} -4 & 2 \\ 4 & -2 \end{pmatrix}$.

§9.1 Introduction (II)

System of linear equations

$$x'_1 = 2x_1 + t^2x_2 + (\cos t)x_3,$$

 $x'_2 = (t + \sin t)x_1 + 3tx_2 + (e^t)x_3,$
 $x'_3 = -x_1 + x_2 + x_3.$

In matrix form

$$\mathbf{x}' = A(t) \ \mathbf{x},$$
 where
$$\mathbf{x} \stackrel{def}{=} \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right), \ A(t) \stackrel{def}{=} \left(\begin{array}{ccc} 2 & t^2 & \cos t \\ t + \sin t & 3 \, t & e^t \\ -1 & 1 & 1 \end{array} \right).$$

§9.1 Introduction (III)

$$\underbrace{m} \times y'' + \underbrace{b} \times y' + \underbrace{k} \times y = \mathbf{F}_{\mathbf{ext}}(t), \quad (\ell)$$
 inertia damping stiffness

To turn (ℓ) into system of linear equations, note that y'' = (y')' so that (ℓ) becomes

$$(y')' = -\frac{b}{m}(y') - \frac{k}{m}y + \frac{\mathbf{F_{ext}}(t)}{m}.$$

In matrix form

$$\mathbf{x}' = A\mathbf{x} + \mathbf{f}(t),$$

where
$$\mathbf{x} \stackrel{def}{=} \begin{pmatrix} y \\ y' \end{pmatrix}$$
, $A \stackrel{def}{=} \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{pmatrix}$, $\mathbf{f}(t) = \begin{pmatrix} 0 \\ \frac{\mathbf{F_{ext}}(t)}{m} \end{pmatrix}$.

§9.1 Introduction (IV)

Coupled mass-spring oscillator

$$2\frac{d^2 x}{d t^2} = -6x + 2y,$$

$$\frac{d^2 y}{d t^2} = 2x - 2y. \quad (\ell)$$

§9.1 Introduction (IV)

Coupled mass-spring oscillator

$$2\frac{d^{2}x}{dt^{2}} = -6x + 2y,$$

$$\frac{d^{2}y}{dt^{2}} = 2x - 2y. \quad (\ell)$$

To turn system (ℓ) into first order equations, let $\mathbf{x}=\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}$,

System (
$$\ell$$
) becomes $\mathbf{x}' = A\mathbf{x}$, with $A \stackrel{def}{=} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 0 \end{pmatrix}$.

where $x_1 = x$, $x_2 = x'_1$, $x_3 = y$, $x_4 = x'_2$.

§9.4 Linear systems in normal form

System of n linear differential equations in normal form

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{x}(t), \mathbf{f}(t) \in \mathcal{R}^{n}, \quad A(t) \in \mathcal{R}^{n \times n}$$

IVP for system of ODEs:
$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t)$$
, $\mathbf{x}(t_0) = \mathbf{x}_0$.

§9.4 Linear systems in normal form

System of n linear differential equations in normal form

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{x}(t), \mathbf{f}(t) \in \mathcal{R}^n, \quad A(t) \in \mathcal{R}^{n \times n}$$

IVP for system of ODEs:
$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t)$$
, $\mathbf{x}(t_0) = \mathbf{x}_0$.

Thm. 2, Existence and Uniqueness: Suppose A(t) and f(t) are continuous on an open interval I that contains t_0 . Then, for any initial vector \mathbf{x}_0 , there exists a unique solution $\mathbf{x}(t)$ on I to IVP.

Linear Dependence of Vector Functions

Definition 1. The m vector functions $\mathbf{x}_1(t), \dots, \mathbf{x}_m(t) \in \mathcal{R}^n$ are linearly dependent on an interval I if there exist constants c_1, \dots, c_m , not all zero, such that

$$c_1 \mathbf{x}_1(t) + \cdots + c_m \mathbf{x}_m(t) = \mathbf{0}$$
, for all $t \in I$.

Otherwise, they are linearly independent on I.

Linear Dependence of Vector Functions

Definition 1. The m vector functions $\mathbf{x}_1(t), \dots, \mathbf{x}_m(t) \in \mathbb{R}^n$ are linearly dependent on an interval I if there exist constants c_1, \dots, c_m , not all zero, such that

$$c_1 \mathbf{x}_1(t) + \cdots + c_m \mathbf{x}_m(t) = \mathbf{0}$$
, for all $t \in I$.

Otherwise, they are linearly independent on I.

Example: Show that
$$\mathbf{x}_1(t) = \begin{pmatrix} |t| \\ t \\ 1 \end{pmatrix}$$
, $\mathbf{x}_2(t) = \begin{pmatrix} t \\ |t| \\ 1 \end{pmatrix}$ linearly

dependent on $I_1 = [0,1]$, linearly independent on $I_2 = [-1,1]$

- ▶ On $I_1 = [0, 1]$, $\mathbf{x}_2(t) \mathbf{x}_1(t) = \mathbf{0}$, thus they are linearly dependent.
- ▶ On $l_2 = [-1, 1]$, let $c_1 \mathbf{x}_2(t) + c_2 \mathbf{x}_1(t) = \mathbf{0}$. Then $c_1 |t| + c_2 t = 0$ for $t = \pm 1$. Thus $c_1 = c_2 = 0$.

Definition 2. The **Wronskian** of *n* vector functions $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t) \in \mathcal{R}^n$ is

$$\mathbf{W}\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right]\left(t\right) \stackrel{def}{=} \mathbf{det}\left(\mathbf{x}_{1}\left(t\right), \cdots, \mathbf{x}_{n}\left(t\right)\right).$$

Thus, $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ are linearly independent on interval I if $\mathbf{W}[\mathbf{x}_1, \dots, \mathbf{x}_n](t) \neq 0$ for any $t \in I$.

Definition 2. The **Wronskian** of *n* vector functions $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t) \in \mathcal{R}^n$ is

$$\mathbf{W}\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right]\left(t\right) \stackrel{def}{=} \mathbf{det}\left(\mathbf{x}_{1}\left(t\right), \cdots, \mathbf{x}_{n}\left(t\right)\right).$$

Thus, $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ are linearly independent on interval I if $\mathbf{W}[\mathbf{x}_1, \dots, \mathbf{x}_n](t) \neq 0$ for any $t \in I$.

► **Example 1:** $\mathbf{x}_1(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$, $\mathbf{x}_2(t) = \begin{pmatrix} t \\ t \end{pmatrix}$ linearly independent since $\mathbf{W}[\mathbf{x}_1, \mathbf{x}_2](t) = t^2 - t^3 \not\equiv 0$.

Definition 2. The **Wronskian** of *n* vector functions $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t) \in \mathcal{R}^n$ is

$$\mathbf{W}\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right]\left(t\right) \stackrel{def}{=} \mathbf{det}\left(\mathbf{x}_{1}\left(t\right), \cdots, \mathbf{x}_{n}\left(t\right)\right).$$

Thus, $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ are linearly independent on interval I if $\mathbf{W}[\mathbf{x}_1, \dots, \mathbf{x}_n](t) \neq 0$ for any $t \in I$.

- ► **Example 1:** $\mathbf{x}_1(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$, $\mathbf{x}_2(t) = \begin{pmatrix} t \\ t \end{pmatrix}$ linearly independent since $\mathbf{W}[\mathbf{x}_1, \mathbf{x}_2](t) = t^2 t^3 \not\equiv 0$.
- ▶ Example 2: $\mathbf{x}_1(t) = \begin{pmatrix} |t| \\ t \end{pmatrix}$, $\mathbf{x}_2(t) = \begin{pmatrix} t \\ |t| \end{pmatrix}$ linearly independent on $I_2 = [-1, 1]$, but $\mathbf{W}[\mathbf{x}_1, \mathbf{x}_2](t) \equiv 0$.

Representation of Solutions

Thm. 3. Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be n linearly independent solutions to the homogeneous system

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \ A(t) \in \mathcal{R}^{n \times n} \quad (\ell)$$

on interval I, where A(t) is a matrix function continuous on I. Then every solution to (ℓ) on I can be expressed in the form

$$\mathbf{x}(t) = (\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix},$$

where c_1, \dots, c_n are constants.

Example. Verify that

$$\mathbf{x}_1\left(t
ight) = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \, e^{2\,t}, \; \mathbf{x}_2\left(t
ight) = \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) \, e^{-t}, \; \mathbf{x}_3\left(t
ight) = \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) \, e^{-t}$$

are fundamental solution set for $\mathbf{x}'(t) = A\mathbf{x}(t)$, $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Example. Verify that

are fundamental solution set for

$$\mathbf{x}_1(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t}, \ \mathbf{x}_2(t) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-t}, \ \mathbf{x}_3(t) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}$$
 are fundamental solution set for
$$\mathbf{x}'(t) = A\mathbf{x}(t), \ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

SOLUTION:

$$\mathbf{x}'_{1}(t) = 2\mathbf{x}_{1}(t), \quad A\mathbf{x}_{1}(t) = 2\mathbf{x}_{1}(t)
\mathbf{x}'_{2}(t) = -\mathbf{x}_{2}(t), \quad A\mathbf{x}_{2}(t) = -\mathbf{x}_{2}(t)
\mathbf{x}'_{3}(t) = -\mathbf{x}_{3}(t), \quad A\mathbf{x}_{3}(t) = -\mathbf{x}_{3}(t)$$

The Wronskian is

$$\mathbf{W}\left[\mathbf{x}_{1},\,\mathbf{x}_{2},\,\mathbf{x}_{3}\right](t) = \det\left(\mathbf{x}_{1}(t),\,\mathbf{x}_{2}(t),\,\mathbf{x}_{3}(t)\right)$$

 $= \det \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} = -3.$

Representation of Solutions: Thm. 4.

Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be *n* linearly independent solutions to

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \ A(t) \in \mathcal{R}^{n \times n} \quad (\ell_1)$$

on interval I, where A(t) is continuous on I.

Let $\mathbf{x}_p(t)$ be a particular solution to nonhomogeneous system

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{f}(t) \in \mathbb{R}^n$$
 continuous on I . (ℓ_2)

Then every solution to (ℓ_2) on I is in the form

$$\mathbf{x}(t) = \mathbf{x}_{p}(t) + (\mathbf{x}_{1}(t), \dots, \mathbf{x}_{n}(t)) \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix},$$

where c_1, \dots, c_n are constants.

Homogeneous system, constant coefficients

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, A \in \mathcal{R}^{n \times n}$$
 (ℓ)

Assume solution in form $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}, \mathbf{u} \neq \mathbf{0}$. Then

$$\mathbf{x}'(t) = \lambda \mathbf{u} e^{\lambda t}$$
, and $A\mathbf{x}(t) = A\mathbf{u} e^{\lambda t}$.

 \triangleright λ , \mathbf{u} must be eigenvalue-eigenvector pair:

$$\implies$$
 $A\mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{u} \neq \mathbf{0}.$

Homogeneous system, constant coefficients

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, A \in \mathcal{R}^{n \times n}$$
 (ℓ)

▶ Assume solution in form $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}, \mathbf{u} \neq \mathbf{0}$. Then

$$\mathbf{x}'(t) = \lambda \mathbf{u} e^{\lambda t}$$
, and $A\mathbf{x}(t) = A \mathbf{u} e^{\lambda t}$.

 $ightharpoonup \lambda$, $oldsymbol{u}$ must be eigenvalue-eigenvector pair:

$$\implies$$
 $A\mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{u} \neq \mathbf{0}.$

Example. Let
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 in (ℓ) . Its eigenvalues are

 $\lambda_1=2, \lambda_2=-1, \lambda_3=-1$, with corresponding eigenvectors

$$\mathbf{u}_{1}(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{u}_{2}(t) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{u}_{3}(t) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Homogeneous system, constant coefficients

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, A \in \mathcal{R}^{n \times n}$$
 (ℓ)

Assume solution in form $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}, \mathbf{u} \neq \mathbf{0}$. Then

$$\mathbf{x}'(t) = \lambda \mathbf{u} e^{\lambda t}$$
, and $A\mathbf{x}(t) = A\mathbf{u} e^{\lambda t}$.

 $\triangleright \lambda$, **u** must be eigenvalue-eigenvector pair:

$$\implies$$
 $A\mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{u} \neq \mathbf{0}.$

Example. Let
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 in (ℓ) . Fundamental solution set

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t}, \ \mathbf{x}_{2}(t) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-t}, \ \mathbf{x}_{3}(t) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}.$$

Diagonalizable, homogeneous, constant coef. (SS9.5-6, 5.7)

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \quad A \in \mathcal{R}^{n \times n} \quad (\ell_1)$$

► Assume *A* is diagonalizable:

$$A = U \wedge U^{-1}, \quad U = (\mathbf{u}_1, \dots, \mathbf{u}_n), \ \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

▶ General solution to (ℓ_1)

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{u}_1 + \dots + c_n e^{\lambda_n t} \mathbf{u}_n. \quad (\ell_2)$$

- ▶ If A has n distinct eigenvalues, then A is diagonalizable.
- ▶ If A is symmetric, then A is diagonalizable.

Example I: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} -1.5 & 0.5 \\ 1 & -1 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ *A* is diagonalizable with eigenvalues $\lambda_1 = -0.5, \lambda_2 = -2$:

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, \ \mathbf{v}_1 = \left(egin{array}{c} 1 \ 2 \end{array}
ight), \quad A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \ \mathbf{v}_2 = \left(egin{array}{c} -1 \ 1 \end{array}
ight).$$

- ▶ General solution to (ℓ) : $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$.
- $ightharpoonup c_1, c_2$ determined by $m {f x}_0:
 m {f x}\,(0) = c_1 \, {f v}_1 + \, c_2 \, {f v}_2 = {f x}_0.$
- ► General solution decays to $\mathbf{0}$ because $\lambda_1 < 0, \lambda_2 < 0$. ($\mathbf{0}$ is attractor)

Example I: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} -1.5 & 0.5 \\ 1 & -1 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ *A* is diagonalizable with eigenvalues $\lambda_1 = -0.5, \lambda_2 = -2$:

$$A\mathbf{v}_1=\lambda_1\mathbf{v}_1,\ \mathbf{v}_1=\left(egin{array}{c}1\2\end{array}
ight),\quad A\mathbf{v}_2=\lambda_2\mathbf{v}_2,\ \mathbf{v}_2=\left(egin{array}{c}-1\1\end{array}
ight).$$

- ▶ General solution to (ℓ) : $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$.
- c_1, c_2 determined by $\mathbf{x}_0 : \mathbf{x}(0) = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{x}_0$.
- ► General solution decays to $\mathbf{0}$ because $\lambda_1 < 0, \lambda_2 < 0$. ($\mathbf{0}$ is attractor)

Example II: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} 4 & -5 \\ -2 & 1 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ *A* is diagonalizable with eigenvalues $\lambda_1 = 6, \lambda_2 = -1$:

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, \ \mathbf{v}_1 = \left(egin{array}{c} -5 \ 2 \end{array}
ight), \quad A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \ \mathbf{v}_2 = \left(egin{array}{c} 1 \ 1 \end{array}
ight).$$

- ▶ General solution to (ℓ) : $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$.
- $ightharpoonup c_1, c_2$ determined by $m {f x}_0:
 m {f x}\,(0) = c_1 \, {f v}_1 + \, c_2 \, {f v}_2 = {f x}_0.$
- ▶ **0** is **saddle** because $\lambda_1 > 0, \lambda_2 < 0$.

Example II: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} 4 & -5 \\ -2 & 1 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ *A* is diagonalizable with eigenvalues $\lambda_1 = 6, \lambda_2 = -1$:

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, \ \mathbf{v}_1 = \left(egin{array}{c} -5 \ 2 \end{array}
ight), \quad A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \ \mathbf{v}_2 = \left(egin{array}{c} 1 \ 1 \end{array}
ight).$$

- ▶ General solution to (ℓ) : $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$.
- $ightharpoonup c_1, c_2$ determined by $m {f x}_0:
 m {f x}\,(0) = c_1 \, {f v}_1 + \, c_2 \, {f v}_2 = {f x}_0.$
- ▶ **0** is **saddle** because $\lambda_1 > 0, \lambda_2 < 0$.

FIGURE 3 The origin as a saddle point.

§9.6 Complex eigenvalues (I)

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \quad A \in \mathcal{R}^{n \times n} \quad (\ell)$$

Assume solution in form $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}$, $\mathbf{u} \neq \mathbf{0}$. Then λ , \mathbf{u} must be eigenvalue-eigenvector pair:

$$\implies \quad A\,\mathbf{u} = \lambda\,\mathbf{u}, \quad \mathbf{u} \neq \mathbf{0}.$$

§9.6 Complex eigenvalues (I)

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \ A \in \mathcal{R}^{n \times n} \quad (\ell)$$

Assume solution in form $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}$, $\mathbf{u} \neq \mathbf{0}$. Then λ , \mathbf{u} must be eigenvalue-eigenvector pair:

$$\implies$$
 $A \mathbf{u} = \lambda \mathbf{u}, \quad \mathbf{u} \neq \mathbf{0}.$

- ▶ If $\lambda = \alpha + i \beta$ is complex, with $i^2 = -1$ and $\beta \neq 0$, then $\mathbf{u} = \mathbf{a} + i \mathbf{b}$ must be complex, with $\mathbf{b} \neq \mathbf{0}$.
- Since $(-i)^2 = -1$, another eigenvalue must be $\overline{\lambda} = \alpha i \beta$, and another eigenvector $\overline{\mathbf{u}} = \mathbf{a} i \mathbf{b}$
- $ightharpoonup \mathbf{x}(t) = e^{\lambda t}\mathbf{u}$ and $\overline{\mathbf{x}}(t) = e^{\overline{\lambda} t}\overline{\mathbf{u}}$ must both be solutions to (ℓ) .

§9.6 Complex eigenvalues (II)

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, A \in \mathcal{R}^{n \times n}$$
 (ℓ)

▶ $\mathbf{x}(t) = e^{\lambda t}\mathbf{u}$ is solution to (ℓ) with $\lambda = \alpha + i\beta$, $\mathbf{u} = \mathbf{a} + i\mathbf{b}$.

$$\mathbf{x}(t) = e^{(\alpha+i\beta)t} \mathbf{u} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t)) (\mathbf{a} + i\mathbf{b})$$

$$= e^{\alpha t} (\cos(\beta t) \mathbf{a} - \sin(\beta t) \mathbf{b}) + i e^{\alpha t} (\sin(\beta t) \mathbf{a} + \cos(\beta t) \mathbf{b})$$

$$\stackrel{def}{=} \mathbf{w}_{1}(t) + i \mathbf{w}_{2}(t)$$

• Equation (ℓ) becomes

$$\mathbf{w}'_{1}(t) + i \, \mathbf{w}'_{2}(t) = A \, \mathbf{w}_{1}(t) + i \, A \, \mathbf{w}_{2}(t),$$

• which is <u>two</u> solutions to (ℓ) ,

$$\mathbf{w}_{1}'(t) = A \mathbf{w}_{1}(t), \quad \mathbf{w}_{2}'(t) = A \mathbf{w}_{2}(t).$$

Complex eigenvalues: **Example I**

Find general solution to

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^2, \quad A = \begin{pmatrix} -1 & 2 \\ -1 & -3 \end{pmatrix} \quad (\ell)$$

Solution: eigenvalues of $A = -2 \pm i$,

 $\mathbf{v}(t) = c_1 \mathbf{w}_1(t) + c_2 \mathbf{w}_2(t)$

$$A\left(\left(\begin{array}{c}2\\-1\end{array}\right)+i\left(\begin{array}{c}0\\1\end{array}\right)\right)=(-2+i)\left(\left(\begin{array}{c}2\\-1\end{array}\right)+i\left(\begin{array}{c}0\\1\end{array}\right)\right).$$

Therefore $\mathbf{w}_1(t) = e^{-2t} \left(\cos(t) \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \sin(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$,

$$\mathbf{w}_{2}(t) = e^{-2t} \left(\sin(t) \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \cos(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right).$$

 $= e^{-2t} \left(\cos(t) \left(\frac{2c_1}{c_2 - c_1} \right) + \sin(t) \left(\frac{2c_2}{c_2 - c_2 - c_1} \right) \right)$

general solution is

herefore
$$\mathbf{w}_1(t) = e^{-2t} \left(\cos(t) \left(-1 \right) - \sin(t) \left(-1 \right) \right)$$

$$\mathbf{w}_2(t) = e^{-2t} \left(\sin(t) \left(-1 \right) + \cos(t) \left(-1 \right) \right)$$

Coupled mass-spring oscillator with fixed ends (I)

$$m_1 \frac{d^2 x_1}{d t^2} = -k_1 x_1 + k_2 (x_2 - x_1),$$

 $m_2 \frac{d^2 x_2}{d t^2} = -k_2 (x_2 - x_1) - k_3 x_2,$

where x_1 , x_2 are displacements of masses m_1 , m_2 .

Figure 9.5 Coupled mass-spring system with fixed ends

Coupled mass-spring oscillator with fixed ends (II)

$$m_1 \frac{d^2 x_1}{d t^2} = -k_1 x_1 + k_2 (x_2 - x_1),$$

$$m_2 \frac{d^2 x_2}{d t^2} = -k_2 (x_2 - x_1) - k_3 x_2,$$

where x_1 , x_2 are displacements of masses m_1 , m_2 . Normal form

$$\mathbf{y}'(t) = A\mathbf{y}(t)$$
, with $\mathbf{y} = \begin{pmatrix} x_1 \\ x_1' \\ x_2 \\ x_2' \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1+k_2}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_1} & 0 & -\frac{k_2+k_3}{m_1} & 0 \end{pmatrix}$.

A only has imaginary eigenvalues $\pm i \beta_1$, $\pm i \beta_2$.

Coupled mass-spring oscillator with fixed ends (III)

$$\mathbf{y}'(t) = A\mathbf{y}(t), \text{ with } \mathbf{y} = \begin{pmatrix} x_1 \\ x_1' \\ x_2 \\ x_2' \end{pmatrix}, A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & 0 & -\frac{k_2 + k_3}{m_2} & 0 \end{pmatrix}$$

A has imaginary eigenvalues $\pm i \beta_1$, $\pm i \beta_2$. Compute β_1 , β_2 for $m_1 = m_2 = 1 \text{kg}$, $k_1 = 1 \text{kg/sec}^2$, $k_2 = 2 \text{kg/sec}^2$, $k_3 = 3 \text{kg/sec}^2$.

SOLUTION:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -3 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -5 & 0 \end{pmatrix}, \quad \mathbf{det} (A - \lambda I) = \lambda^4 + 8 \lambda^2 + 11 = 0.$$

Thus,
$$\lambda^2 = -4 \pm \sqrt{5}$$
.

$$eta_1 = \sqrt{4-\sqrt{5}}\,/\text{sec}\;,\quad eta_2 = \sqrt{4+\sqrt{5}}\,/\text{sec}\;.$$

Example III: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} -2 & -2.5 \\ 10 & -2 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ A is diagonalizable with complex eigenvalues $\lambda = -2 \pm 5 i$ and eigenvectors $\begin{pmatrix} \pm i \\ 2 \end{pmatrix}$. General solution to (ℓ) :

$$\mathbf{x}\left(t\right) = c_1 \, \left(\begin{array}{c} -\sin\left(5\,t\right) \\ 2\cos\left(5\,t\right) \end{array} \right) \, e^{-2\,t} + \, c_2 \, \left(\begin{array}{c} \cos\left(5\,t\right) \\ 2\sin\left(5\,t\right) \end{array} \right) \, e^{-2\,t}.$$

- $ightharpoonup c_1, c_2$ determined by $\mathbf{x}_0 : \mathbf{x}(0) = c_1 \begin{pmatrix} 0 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{x}_0.$
- ▶ **0** is **spiral point** because of factor e^{-2t} .

Example III: Plot dynamical system trajectory:

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{pmatrix} -2 & -2.5 \\ 10 & -2 \end{pmatrix}, \quad \mathbf{x}(0) = \mathbf{x}_0 \quad (\ell)$$

▶ A is diagonalizable with complex eigenvalues $\lambda = -2 \pm 5 i$ and eigenvectors $\begin{pmatrix} \pm i \\ 2 \end{pmatrix}$. General solution to (ℓ) :

$$\mathbf{x}(t) = c_1 \left(\begin{array}{c} -\sin(5t) \\ 2\cos(5t) \end{array} \right) e^{-2t} + c_2 \left(\begin{array}{c} \cos(5t) \\ 2\sin(5t) \end{array} \right) e^{-2t}.$$

- $ightharpoonup c_1, c_2$ determined by $\mathbf{x}_0: \mathbf{x}(0) = c_1 \left(egin{array}{c} 0 \\ 2 \end{array}\right) + c_2 \left(egin{array}{c} 1 \\ 0 \end{array}\right) = \mathbf{x}_0.$
- ▶ **0** is **spiral point** because of factor e^{-2t} .

§9.7 Representation of Solutions: **Thm. 4.**

Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be *n* linearly independent solutions to

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \ A \in \mathcal{R}^{n \times n}. \quad (\ell_1)$$

Let $\mathbf{x}_p(t)$ be a particular solution to nonhomogeneous system

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{f}(t) \in \mathcal{R}^n$$
 continuous. (ℓ_2)

Then every solution to (ℓ_2) is in the form

$$\mathbf{x}(t) = \mathbf{x}_{p}(t) + (\mathbf{x}_{1}(t), \dots, \mathbf{x}_{n}(t)) \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix},$$

where c_1, \dots, c_n are constants.

Example I: Find general solution to

$$\mathbf{x}'(t) = A\mathbf{x}(t) + t\mathbf{g}$$
, with $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\mathbf{g} = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$. (ℓ)

SOLUTION:

▶ Fundamental solution set for $\mathbf{x}'(t) = A\mathbf{x}(t)$ is

$$\mathbf{x}_1(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t}, \ \mathbf{x}_2(t) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-t}, \ \mathbf{x}_3(t) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}.$$

▶ Seek particular solution $\mathbf{x}_p(t) = t \mathbf{a} + \mathbf{b}$. (ℓ) becomes

$$\mathbf{a} = A (t \mathbf{a} + \mathbf{b}) + t \mathbf{g}.$$

Therefore
$$\mathbf{a} = -A^{-1}\mathbf{g} = \frac{1}{2} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$
, $\mathbf{b} = A^{-1}\mathbf{a} = \frac{1}{4} \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$.

Example I: Find general solution · · ·

SOLUTION:

▶ Fundamental solution set for $\mathbf{x}'(t) = A\mathbf{x}(t)$ is

$$\mathbf{x}_1\left(t
ight) = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \,e^{2\,t}, \; \mathbf{x}_2\left(t
ight) = \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) \,e^{-t}, \; \mathbf{x}_3\left(t
ight) = \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) \,e^{-t}.$$

- ▶ Particular solution $\mathbf{x}_p(t) = \frac{t}{2} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$.
- ightharpoonup general solution to (ℓ)

$$\mathbf{x}(t) = \frac{t}{2} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}$$

Variation of parameters (I)

Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be n linearly independent solutions to $\mathbf{x}'(t) = A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \quad A(t) \in \mathcal{R}^{n \times n}. \quad (\ell_1)$

▶ Seek particular solution $\mathbf{x}_{p}(t) = (\mathbf{x}_{1}(t), \dots, \mathbf{x}_{n}(t)) \cdot \mathbf{v}(t)$ to nonhomogeneous system

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{f}(t) \in \mathcal{R}^n$$
 continuous. (ℓ_2)

▶ Equation (ℓ_2) becomes

$$\mathbf{x}'_{p}(t) = (\mathbf{x}'_{1}(t), \cdots, \mathbf{x}'_{n}(t)) \cdot \mathbf{v}(t) + (\mathbf{x}_{1}(t), \cdots, \mathbf{x}_{n}(t)) \cdot \mathbf{v}'(t)$$

$$= (\widetilde{A(t)} \mathbf{x}_{1}(t), \cdots, \widetilde{A(t)} \mathbf{x}_{n}(t)) \cdot \mathbf{v}(t) + \mathbf{f}(t).$$

► Therefore $(\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \cdot \mathbf{v}'(t) = \mathbf{f}(t)$.

$$\mathbf{v}(t) = \int_{-t}^{t} (\mathbf{x}_{1}(\tau), \cdots, \mathbf{x}_{n}(\tau))^{-1} \mathbf{f}(\tau) d\tau,$$

$$\mathbf{x}_{p}(t) = (\mathbf{x}_{1}(t), \cdots, \mathbf{x}_{n}(t)) \int_{-t}^{t} (\mathbf{x}_{1}(\tau), \cdots, \mathbf{x}_{n}(\tau))^{-1} \mathbf{f}(\tau) d\tau.$$

Variation of parameters (II)

Find the solution to IVP

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{f}(t) \in \mathcal{R}^n, \quad \mathbf{x}(t_0) = \mathbf{x}_0. \quad (\ell_1)$$

SOLUTION: Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be n linearly independent solutions to

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \quad A(t) \in \mathcal{R}^{n \times n}. \quad (\ell_2)$$

Solution to (ℓ_1) has form

$$\mathbf{x}(t) = (\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \mathbf{c}$$

$$+ (\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \int_{t_0}^t (\mathbf{x}_1(\tau), \dots, \mathbf{x}_n(\tau))^{-1} \mathbf{f}(\tau) d\tau.$$

$$\mathbf{x}(t_0) = (\mathbf{x}_1(t_0), \dots, \mathbf{x}_n(t_0)) \mathbf{c}, \Rightarrow \mathbf{c} = (\mathbf{x}_1(t_0), \dots, \mathbf{x}_n(t_0))^{-1} \mathbf{x}(t_0)$$

Variation of parameters (III)

Find the solution to IVP

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{f}(t) \in \mathcal{R}^n, \quad \mathbf{x}(t_0) = \mathbf{x}_0. \quad (\ell_1)$$

SOLUTION: Let $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ be n linearly independent solutions to

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathcal{R}^n, \quad A(t) \in \mathcal{R}^{n \times n}. \quad (\ell_2)$$

Solution to (ℓ_1) has form

$$\mathbf{x}(t) = (\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \left((\mathbf{x}_1(t_0), \dots, \mathbf{x}_n(t_0))^{-1} \mathbf{x}(t_0) \right) + (\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \int_{t_0}^t (\mathbf{x}_1(\tau), \dots, \mathbf{x}_n(\tau))^{-1} \mathbf{f}(\tau) d\tau.$$

$$\textbf{Solve} \quad \textbf{x}'\left(t\right) = \left(\begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array}\right) \, \textbf{x}\left(t\right) + \left(\begin{array}{c} e^{2\,t} \\ 1 \end{array}\right), \quad \textbf{x}\left(0\right) = \left(\begin{array}{c} -1 \\ 0 \end{array}\right). \ \left(\ell\right)$$

Solve
$$\mathbf{x}'(t) = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \mathbf{x}(t) + \begin{pmatrix} e^{2t} \\ 1 \end{pmatrix}, \quad \mathbf{x}(0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}. \quad (\ell)$$
SOLUTION: $\mathbf{x}_1(t) = \begin{pmatrix} 3 e^t \\ e^t \end{pmatrix}$ and $\mathbf{x}_2(t) = \begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$ linearly

independent solutions to $\mathbf{x}'(t) = \begin{pmatrix} e^t \\ e^t \end{pmatrix}$ and $\mathbf{x}_2(t) = \begin{pmatrix} e^{-t} \\ 1 \\ -2 \end{pmatrix} \mathbf{x}(t)$.

independent solutions to
$$\mathbf{x}'(t) = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \mathbf{x}(t)$$
.

Solution $\mathbf{x}(t) = (\mathbf{x}_1(t), \mathbf{x}_2(t)) \left((\mathbf{x}_1(0), \mathbf{x}_2(0))^{-1} \mathbf{x}(0) \right) + (\mathbf{x}_1(t), \mathbf{x}_2(t)) \int_0^t (\mathbf{x}_1(\tau), \mathbf{x}_2(\tau))^{-1} \mathbf{f}(\tau) d\tau$

$$= \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} 3e^\tau & e^{-\tau} \\ e^\tau & e^{-\tau} \end{pmatrix}^{-1} \begin{pmatrix} e^{2\tau} \\ 1 \end{pmatrix} d\tau$$

Solution
$$\mathbf{x}(t) = \begin{pmatrix} 3 e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} 3 e^\tau & e^{-\tau} \\ e^\tau & e^{-\tau} \end{pmatrix}^{-1} \begin{pmatrix} e^{2\tau} \\ 1 \end{pmatrix} d\tau$$

Solution
$$\mathbf{x}(t) = \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$+ \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} 3e^\tau & e^{-\tau} \\ e^\tau & e^{-\tau} \end{pmatrix}^{-1} \begin{pmatrix} e^{2\tau} \\ 1 \end{pmatrix} d\tau$$

$$= \frac{1}{2} \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$+ \frac{1}{2} \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} e^\tau - e^{-\tau} \\ -e^{3\tau} + 3e^\tau \end{pmatrix} d\tau$$

$$= \frac{1}{2} \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$+ \frac{1}{2} \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$+ \frac{1}{2} \begin{pmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{pmatrix} \begin{pmatrix} e^t + e^{-t} - 2 \\ -\frac{1}{3}e^{3t} + 3e^t - \frac{8}{3} \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} -27e^t - 5e^{-t} + 8e^{2t} + 18 \\ -9e^t - 5e^{-t} + 2e^{2t} + 12 \end{pmatrix}$$