§4.1 Damped mass–spring oscillator (I)

- mass m attached to a spring fixed at one end
- ightharpoonup mass m moves due to external force $\mathbf{F_{ext}}(t)$
- \blacktriangleright mass m is slowed down by SPRING and FRICTION.
- ▶ Goal: derive a differential equation to describe the motion

 $y=y\left(t
ight), \ \ \underline{ ext{time-dependent}} \ ext{displacement from } ext{Equilibrium point}.$

Figure 4.1 Damped mass-spring oscillator

§4.1 Damped mass–spring oscillator (II)

Newton's second law—total force = mass m times acceleration

- total force:
 - ▶ Spring resistance: $\mathbf{F_{spring}} \stackrel{def}{=} -k y$, k = stiffness.
 - Friction:

F_{friction}
$$\stackrel{\text{def}}{=} -b \frac{d y}{d t} = -b y', \quad b = damping coefficient$$

- ▶ total force = $\mathbf{F_{ext}}(t) ky by'$
- ▶ mass m times acceleration = $m \frac{d^2 y}{d t^2} = m y''$.

Differential equation according to Newton's second law

$$my'' = \mathbf{F_{ext}}(t) - ky - by', \text{ or }$$

$$\underbrace{m} \times y'' + \underbrace{b} \times y' + \underbrace{k} \times y = \mathbf{F}_{\mathbf{ext}}(t),$$
inertia damping stiffness

World's first Differential equations in 1671

THE METHOD of FLUXIONS AND INFINITE SERIES: WITHITS Application to the Geometry of CURVE-LINES. By the INVENTOR Sir ISAAC NEWTON. K. Late Prefident of the Royal Society. Translated from the AUTHOR's LATIN ORIGINAL 83.12 not yet made publick. To which is fubicin'd. A PERPETUAL COMMENT upon the whole Work, Confifling of ANNOTATIONS, ILLUSTRATIONS, and SUPPLEMENTS. In order to make this Treatife A compleat Institution for the use of LEARNERS. By JOHN COLSON, M. A. and F. R. S. Mafter of Sir Joseph Williamson's free Mathematical-School at Recbeffer. LONDON: Printed by HENRY WOODFALL; And Sold by JOHN NOURSE, at the Lamb without Temple-Bar. M.DCC.XXXVI.

§4.2 Homogeneous linear equations

► Homogeneous linear 2^{nd} order constant-coefficient differential equation $(a \neq 0)$

$$ay'' + by' + cy = 0, (\ell_1),$$

▶ General linear 2^{nd} order constant-coefficient DE $(a \neq 0)$

$$ay'' + by' + cy = f(t), (\ell_2).$$

To solve (ℓ_1) ,

- ▶ assume a solution $y(t) = e^{rt}$ for some constant r.
- substitute $y(t) = e^{rt}$ into (ℓ_1) to get

$$ar^{2}e^{rt} + bre^{rt} + ce^{rt} = 0 \iff ar^{2} + br + c = 0.$$

possible solutions for r

$$r = r_{1,2} \stackrel{\text{def}}{=} \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}.$$

possible solutions for y (t)

$$y(t) = e^{r_1 t}, e^{r_2 t}.$$

Homogeneous linear equations: Example

Find all solutions to

$$y'' + 5y' - 6y = 0, \quad (\ell_1)$$

SOLUTION: Roots to

$$r^2 + 5r - 6 = 0$$

are r = 1, -6, leading to solutions $y_1(t) = e^t$, $y_2(t) = e^{-6t}$.

$$y_1'' + 5y_1' - 6y_1 = 0$$
, $y_2'' + 5y_2' - 6y_2 = 0$, (ℓ_2)

▶ Let $y(t) = c_1 y_1(t) + c_2 y_2(t) \in \mathbf{Span} \{y_1(t), y_2(t)\}$. Then

$$y'' + 5y' - 6y = c_1 (y_1'' + 5y_1' - 6y_1) + c_2 (y_2'' + 5y_2' - 6y_2) \stackrel{by (\ell_2)}{=\!=\!=\!=} 0.$$

▶ So ANY function in **Span** $\{y_1(t), y_2(t)\}$ is a solution to (ℓ_1)

Need additional conditions for unique solution

Solve Initial Value Problem (IVP): **Example**

$$y'' + 5y' - 6y = 0$$
, $y(0) = 0$, $y'(0) = -1$, (ℓ_1)
SOLUTION: DE has solutions in the form $y(t) = c_1 e^t + c_2 e^{-6t}$.

So
$$y'(t) = c_1 e^t - 6 c_2 e^{-6t}$$
, leading to

$$y(0) = c_1 + c_2 = 0,$$

 $y'(0) = c_1 - 6c_2 = -1.$

With solution $c_1=-\frac{1}{7},\ c_2=\frac{1}{7}.$ So solution to IVP

$$y(t) = -\frac{1}{7}e^{t} + \frac{1}{7}e^{-6t}$$
.

Existence and Uniqueness: Homogeneous Case

Thm 1. For any real numbers a, b, c, t_0, Y_0 , and Y_1 with $a \neq 0$, there exists a unique solution to IVP

$$ay'' + by' + cy = 0$$
, $y(t_0) = Y_0$, $y'(t_0) = Y_1$. (ℓ_1)

The solution is valid for all $t \in (-\infty, +\infty)$.

Existence and Uniqueness: Homogeneous Case

Thm 1. For any real numbers a, b, c, t_0, Y_0 , and Y_1 with $a \neq 0$, there exists a unique solution to IVP

$$ay'' + by' + cy = 0$$
, $y(t_0) = Y_0$, $y'(t_0) = Y_1$. (ℓ_1)

The solution is valid for all $t \in (-\infty, +\infty)$.

Figure 4.6 $y(t_0)$, $y'(t_0)$ determine a unique solution

Linear Independence of Two Functions

Definition 1. Functions $y_1(t)$ and $y_2(t)$ are

- ▶ linearly independent on the interval I ⇒ neither of them is a constant multiple of the other on I,
- ▶ **linearly dependent** on *l* Otherwise.

EXAMPLE Let $y_1(t) = \sin(t)$ and $y_2(t) = |\sin(t)|$. Then $y_1(t)$ and $y_2(t)$ are

- ▶ **linearly independent** on the interval $(-\pi, +\pi)$,
- **b** but **linearly dependent** on the interval $(0, +\pi)$.

Representation of Solutions to IVP

Thm 2. For any real numbers a, b, c, with $a \neq 0$, let $y_1(t)$ and $y_2(t)$ be two linearly independent solutions to

$$ay'' + by' + cy = 0.$$

Then there exist unique constants c_1 and c_2 so that $y(t) = c_1 y_1(t) + c_2 y_2(t)$ satisfies the initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1.$$

The solution is valid for all $t \in (-\infty, +\infty)$.

Representation of Solutions to IVP

Thm 2. For any real numbers a, b, c, with $a \neq 0$, let $y_1(t)$ and $y_2(t)$ be two linearly independent solutions to

$$ay'' + by' + cy = 0.$$

Then there exist unique constants c_1 and c_2 so that $y(t) = c_1 y_1(t) + c_2 y_2(t)$ satisfies the initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1.$$

The solution is valid for all $t \in (-\infty, +\infty)$.

Will prove **Thm 2**. with **Thm 1**.

Condition for Linear Dependence of Solutions

Lemma 1. For any real numbers a, b, c, with $a \neq 0$, let $y_1(t)$ and $y_2(t)$ be two solutions to

$$ay'' + by' + cy = 0$$

that satisfy at any point au

$$\det \begin{pmatrix} y_1(\tau) & y_2(\tau) \\ y'_1(\tau) & y'_2(\tau) \end{pmatrix} = y_1(\tau) y'_2(\tau) - y'_1(\tau) y_2(\tau) = 0$$

$$\uparrow \uparrow$$

(Wronskian of $y_1(t)$ and $y_2(t)$)

then $y_1(t)$ and $y_2(t)$ must be linearly dependent on $(-\infty, +\infty)$.

$$ay'' + by' + cy = 0 \quad (\ell)$$

that satisfy $y_1\left(\tau\right)\,y_2'\left(\tau\right)-y_1'\left(\tau\right)\,y_2\left(\tau\right)=0.$ Need to show

 $y_{1}\left(t
ight)$ and $y_{2}\left(t
ight)$ must be linearly dependent on $\left(-\infty,\,+\infty
ight)$.

$$ay'' + by' + cy = 0 \quad (\ell)$$

that satisfy $y_1\left(\tau\right)\,y_2'\left(\tau\right)-y_1'\left(\tau\right)\,y_2\left(\tau\right)=0.$ Need to show $\left[y_1\left(t\right) \text{ and } y_2\left(t\right) \text{ must be linearly dependent on }\left(-\infty,\,+\infty\right).\right]$

Proof:

▶ If $y_1(\tau) \neq 0$, then $y_3(t) \stackrel{def}{=} \left(\frac{y_2(\tau)}{y_1(\tau)}\right) y_1(t)$ is solution to (ℓ) ,

$$y_3\left(\tau\right) = \left(\frac{y_2\left(\tau\right)}{y_1\left(\tau\right)}\right) \ y_1\left(\tau\right) = y_2\left(\tau\right), \quad y_3'\left(\tau\right) = \left(\frac{y_2\left(\tau\right)}{y_1\left(\tau\right)}\right) \ y_1'\left(\tau\right) = y_2'\left(\tau\right).$$

$$ay'' + by' + cy = 0 \quad (\ell)$$

that satisfy $y_1(\tau)$ $y_2'(\tau) - y_1'(\tau)$ $y_2(\tau) = 0$. Need to show $y_1(t)$ and $y_2(t)$ must be linearly dependent on $(-\infty, +\infty)$.

Proof:

▶ If $y_1(\tau) \neq 0$, then $y_3(t) \stackrel{def}{=} \left(\frac{y_2(\tau)}{y_1(\tau)}\right) y_1(t)$ is solution to (ℓ) ,

$$y_3(\tau) = \left(\frac{y_2(\tau)}{y_1(\tau)}\right) y_1(\tau) = y_2(\tau), \quad y_3'(\tau) = \left(\frac{y_2(\tau)}{y_1(\tau)}\right) y_1'(\tau) = y_2'(\tau).$$

▶ $y_3(t)$ and $y_2(t)$ satisfy the same initial conditions at τ . By **Thm.** 1 they must be same on $(-\infty, +\infty)$. $\implies y_2(t)$ is a constant multiple of $y_1(t)$.

$$ay'' + by' + cy = 0 \quad (\ell)$$

that satisfy $y_1(\tau)$ $y_2'(\tau) - y_1'(\tau)$ $y_2(\tau) = 0$. Need to show $y_1(t)$ and $y_2(t)$ must be linearly dependent on $(-\infty, +\infty)$.

Proof:

▶ If $y_1(\tau) \neq 0$, then $y_3(t) \stackrel{def}{=} \left(\frac{y_2(\tau)}{y_1(\tau)}\right) y_1(t)$ is solution to (ℓ) ,

$$y_3\left(\tau\right) = \left(\frac{y_2\left(\tau\right)}{y_1\left(\tau\right)}\right) \ y_1\left(\tau\right) = y_2\left(\tau\right), \quad y_3'\left(\tau\right) = \left(\frac{y_2\left(\tau\right)}{y_1\left(\tau\right)}\right) \ y_1'\left(\tau\right) = y_2'\left(\tau\right).$$

- ▶ $y_3(t)$ and $y_2(t)$ satisfy the same initial conditions at τ . By **Thm.** 1 they must be same on $(-\infty, +\infty)$. ⇒ $y_2(t)$ is a constant multiple of $y_1(t)$.
- ▶ See book for case $y_1(\tau) = 0$ □.

Thm 2. Let $y_1(t)$ and $y_2(t)$ be linearly independent solutions to

$$ay'' + by' + cy = 0.$$
 (ℓ_1)

Then there exist unique constants c_1 and c_2 so that $y(t) = c_1 y_1(t) + c_2 y_2(t)$ satisfies the initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1. \quad (\ell_2)$$

Thm 2. Let $y_1(t)$ and $y_2(t)$ be linearly independent solutions to

$$ay'' + by' + cy = 0.$$
 (\ell_1)

Then there exist unique constants c_1 and c_2 so that $y(t) = c_1 y_1(t) + c_2 y_2(t)$ satisfies the initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1. \quad (\ell_2)$$

PROOF: y(t) satisfies (ℓ_1) for any c_1, c_2 . (ℓ_2) equivalent to

$$\left(\begin{array}{cc} y_1\left(t_0\right) & y_2\left(t_0\right) \\ y_1'\left(t_0\right) & y_2'\left(t_0\right) \end{array}\right) \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \left(\begin{array}{c} Y_0 \\ Y_1 \end{array}\right),$$

which has a unique solution in c_1, c_2 , since the coefficient matrix is invertible by **Lemma 1**:

$$\det \begin{pmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{pmatrix} \neq 0.$$

Distinct Real Roots

▶ Homogeneous linear 2^{nd} order constant-coefficient DE $(a \neq 0)$

$$ay'' + by' + cy = 0$$
, (ℓ_1) ,

▶ distinct real roots in equation $a r^2 + b r + c = 0$.

$$r_1, r_2 \stackrel{\text{def}}{=} \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}.$$

• Linearly independent real solutions to (ℓ_1)

$$y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}.$$

$$\det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} = (r_2 - r_1) e^{(r_2 + r_1) t} \neq 0.$$

Distinct Real Roots: Example

► IVP

$$y'' + 5y' - 6y = 0$$
, $y(0) = 0$, $y'(0) = -1$, (ℓ_1)

- ▶ distinct real roots $r_1 = 1$, $r_2 = -6$ to equation $r^2 + 5$ r 6 = 0.
- (ℓ_1) has solutions in the form $y(t) = c_1 e^t + c_2 e^{-6t}$.

So
$$y'(t) = c_1 e^t - 6 c_2 e^{-6t}$$
, Initial conditions lead to

$$y(0) = c_1 + c_2 = 0,$$

 $y'(0) = c_1 - 6c_2 = -1.$

With solution $c_1 = -\frac{1}{7}, c_2 = \frac{1}{7}$.

So solution to IVP

$$y(t) = -\frac{1}{7}e^{t} + \frac{1}{7}e^{-6t}$$
.

Double Real Root

▶ Homogeneous linear 2^{nd} order constant-coefficient DE $(a \neq 0)$

$$ay'' + by' + cy = 0, (\ell_1),$$

▶ double real root in equation $ar^2 + br + c = 0$.

$$r_1 \stackrel{def}{=} -\frac{b}{2a}$$
, with $b^2 - 4ac = 0$.

- ▶ One solution to (ℓ_1)
- $y_1(t) = e^{r_1 t}$ is solution to (ℓ_1) ; another is $y_2(t) = t e^{r_1 t}$:

$$y_2'(t) = e^{r_1 t} + r_1 y_2(t), \quad y_2''(t) = 2 r_1 e^{r_1 t} + r_1^2 y_2(t)$$

$$a y_2'' + b y_2' + c y_2 = (2 r_1 a + b) e^{r_1 t} + (a r_1^2 + b r_1 + c) y_2(t) = 0.$$

 \triangleright $y_1(t)$ and $y_2(t)$ are linearly independent

$$\det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} = e^{(2r_1)t} \neq 0.$$

Double Real Roots: **Example**

► IVP

$$y'' + 4y' + 4y = 0$$
, $y(0) = 0$, $y'(0) = -1$, (ℓ_1)

- ▶ double real root $r_1 = r_2 = -2$ to equation $r^2 + 4r + 4 = 0$.
- (ℓ_1) has solutions in the form $y(t) = c_1 e^{-2t} + c_2 t e^{-2t}$.

So
$$y'(t) = -2c_1 e^{-2t} + c_2 (e^{-2t} - 2t e^{-2t}),$$

Initial conditions lead to

$$y(0) = c_1 = 0,$$

 $y'(0) = -2c_1 + c_2 = -1.$

With solution $c_1 = 0$, $c_2 = -1$.

So solution to IVP

$$y(t) = -t e^{-2t}$$
.

§4.3 Complex Conjugate Roots (I)

▶ Homogeneous linear 2^{nd} order constant-coefficient DE $(a \neq 0)$

$$ay'' + by' + cy = 0$$
, with $b^2 - 4ac < 0$ (ℓ_1) ,

▶ complex conjugate roots in $ar^2 + br + c = 0$ with $i^2 = -1$:

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \stackrel{def}{=} \alpha \pm i \beta, \quad \text{with } \alpha = -\frac{b}{2a}, \beta = \frac{\sqrt{4ac - b^2}}{2a}.$$

▶ Linearly independent | complex | solutions to (ℓ_1)

$$y_1(t) = e^{(\alpha+i\beta)t}, \ y_2(t) = e^{(\alpha-i\beta)t}.$$

$$\det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} = -2i\beta e^{2\alpha t} \neq 0.$$

Complex Conjugate Roots (II)

▶ Homogeneous linear 2^{nd} order constant-coefficient DE $(a \neq 0)$

$$ay'' + by' + cy = 0$$
, with $b^2 - 4ac < 0$ (ℓ_1),

Linearly independent complex solutions to (ℓ_1)

$$y_1(t) = e^{(\alpha+i\beta)t}, \ y_2(t) = e^{(\alpha-i\beta)t}, \ \alpha = -\frac{b}{2a}, \ \beta = \frac{\sqrt{4ac-b^2}}{2a}.$$

- ► Euler's formula: $e^{(\alpha \pm i \beta) t} = e^{\alpha t} (\cos (\beta t) \pm i \sin (\beta t))$.
- ▶ Linearly independent real solutions to (ℓ_1)

$$\widehat{y}_{1}(t) = \frac{1}{2}(y_{1}(t) + y_{2}(t)) = e^{\alpha t} \cos(\beta t),$$

$$\widehat{y}_{2}(t) = \frac{1}{2i}(y_{1}(t) - y_{2}(t)) = e^{\alpha t} \sin(\beta t).$$

Complex Conjugate Roots: **Example**

► IVP

$$y'' - 4y' + 5y = 0$$
, $y(0) = 0$, $y'(0) = -1$, (ℓ_1)

- complex conjugate roots $r_1, r_2 = 2 \pm i$ to $r^2 4r + 5 = 0$.
- (ℓ_1) has solutions $y(t) = e^{2t} (c_1 \cos(t) + c_2 \sin(t))$.

So
$$y'(t) = e^{2t} ((2c_1 + c_2) \cos(t) + (2c_2 - c_1) \sin(t))$$

Initial conditions lead to

$$y(0) = c_1 = 0,$$

 $y'(0) = 2c_1 + c_2 = -1.$

With solution $c_1 = 0$, $c_2 = -1$.

So solution to IVP

$$y(t) = -e^{2t}\sin(t).$$

Damped mass-spring oscillator: Example (I)

$$\underbrace{m} \times y'' + \underbrace{b} \times y' + \underbrace{k} \times y = \mathbf{F}_{\mathbf{ext}}(t),$$
inertia damping stiffness

Determine the motion when

$$m = 36 \text{kg}, b = 12 \text{kg/sec}, k = 37 \text{kg/sec}^2, y(0) = 0.7 \text{m}, y'(0) = 0.1 \text{m/sec}.$$

SOLUTION: IVP is

$$36 v'' + 12 v' + 37 v = 0$$
, $v(0) = 0.7$, $v'(0) = 0.1$.

Roots to $36 r^2 + 12 r + 37 = 0$ are $r = -\frac{1}{6} \pm i$, so

$$\begin{array}{lcl} y\left(t\right) & = & e^{-\frac{t}{6}}\left(c_{1}\mathbf{cos}\left(t\right)+c_{2}\mathbf{sin}\left(t\right)\right), & y\left(0\right)=c_{1} \\ y'\left(t\right) & = & e^{-\frac{t}{6}}\left(\left(c_{2}-\frac{c_{1}}{6}\right)\mathbf{cos}\left(t\right)-\left(c_{1}+\frac{c_{2}}{6}\right)\mathbf{sin}\left(t\right)\right), \ y'\left(0\right)=c_{2}-\frac{c_{1}}{6}. \end{array}$$

Initial conditions lead to c = 0.7, c = 1.3/6

Initial conditions lead to
$$c_1 = 0.7, c_2 = 1.3/6.$$

$$y(t) = e^{-\frac{t}{6}} (0.7 \cos(t) + 1.3/6 \sin(t)). \quad \text{ in (t)}$$

Damped mass-spring oscillator: Example (II)

► After how many seconds will the mass first cross the equilibrium point?

SOLUTION: Solution to IVP is

$$y(t) = e^{-\frac{t}{6}} (0.7 \cos(t) + 1.3/6 \sin(t))$$

$$= \sqrt{0.7^2 + (1.3/6)^2} e^{-\frac{t}{6}} \sin(t + t_0), \sin(t_0) \stackrel{def}{=} \frac{0.7}{\sqrt{0.7^2 + (1.3/6)^2}}$$

Setting y(t) = 0 gives $t = \pi - t_0 \approx 1.87(\text{sec})$.

§4.4 Nonhomogeneous equations

► Nonhomogeneous linear 2nd order constant-coefficient differential equation

$$ay'' + by' + cy = f(t), \quad a \neq 0, \quad (\ell)$$

- Solve (ℓ) for specific types of f (t).
- ▶ Focus on one PARTICULAR solution for each f(t) for now.

Nonhomogeneous equations, **Example** (I)

Find one PARTICULAR solution for

$$y'' + 3y' + 2y = 3t$$

SOLUTION:

▶ Assume a solution of form y(t) = At + B,

$$y' = A$$
, $y'' = 0$,
and $y'' + 3y' + 2y = 3A + 2(At + B) = 3t$

- Which implies 2A = 3, 3A + 2B = 0
- ► Therefore $A = \frac{3}{2}$, $B = -\frac{9}{4}$ and

$$y(t)=\frac{3}{2}t-\frac{9}{4}.$$

Nonhomogeneous equations, **Example** (II)

Find one PARTICULAR solution for

$$y'' + 3y' + 2y = 10e^{3t}$$

SOLUTION:

Assume a solution of form $y(t) = A e^{3t}$,

$$y' = 3 A e^{3 t}, y'' = 3^2 A e^{3 t}, \text{ and}$$

$$y'' + 3y' + 2y = 3^2 A e^{3t} + 3 \cdot 3 A e^{3t} + 2 \cdot A e^{3t} = 20 A e^{3t} = 10 e^{3t}$$

▶ Therefore $A = \frac{1}{2}$ and

$$y(t) = \frac{1}{2}e^{3t}.$$

Nonhomogeneous equations, **Example** (III)

Find one PARTICULAR solution for

$$y'' + 3y' + 2y = \sin(t)$$

SOLUTION:

▶ Assume a solution of form $y(t) = A \sin(t) + B \cos(t)$, then

$$y'=A\cos\left(t
ight)-B\sin\left(t
ight),\ y''=-A\sin\left(t
ight)-B\cos\left(t
ight),$$
 and

$$y'' + 3y' + 2y = -(A\sin(t) + B\cos(t)) + 3(A\cos(t) - B\sin(t)) + 2(A\sin(t) + B\cos(t))$$
$$= (A - 3B)\sin(t) + (B + 3A)\cos(t) = \sin(t),$$

- ▶ which implies A 3B = 1, B + 3A = 0.
- ► Therefore $A = \frac{1}{10}$, $B = -\frac{3}{10}$ and

$$y(t) = \frac{1}{10} \left(\sin(t) - 3\cos(t) \right).$$

Nonhomogeneous equations, **Example** (IV)

Find one PARTICULAR solution for

$$y'' + 4y = 5t^2e^t$$

SOLUTION:

▶ Assume a solution of form $y(t) = (At^2 + Bt + C)e^t$,

$$y' = (2At + B) e^{t} + (At^{2} + Bt + C) e^{t},$$

 $y'' = 2Ae^{t} + 2(2At + B) e^{t} + (At^{2} + Bt + C) e^{t}$

and

$$y'' + 4y = 2 A e^{t} + 2 (2 A t + B) e^{t} + 5 (A t^{2} + B t + C) e^{t}$$
$$= (5 A t^{2} + (4 A + 5 B) t + (2 A + 2 B + 5 C)) e^{t}$$

- ▶ which implies 5 A = 5, 4 A + 5 B = 0, 2 A + 2 B + 5 C = 0.
- ► Therefore A = 1, $B = -\frac{4}{5}$, $C = -\frac{2}{25}$, and

$$y(t) = \left(t^2 - \frac{4}{5}t - \frac{2}{25}\right)e^t.$$

Nonhomogeneous equations, **Example** (V)

Find one PARTICULAR solution for

$$y'' + y' = 5 t$$

SOLUTION:

Assume a solution of form $y(t) = At^2 + Bt + C$,

$$y' = 2At + B, \quad y'' = 2A.$$

and

$$y'' + y' = 2A + 2At + B = 5t$$

- which implies 2 A = 5, 2 A + B = 0.
- ▶ Therefore $A = \frac{5}{2}$, B = -5, and

$$y(t) = \frac{5}{2}t^2 - 5t.$$

Nonhomogeneous equations: General case (I)

Find one PARTICULAR solution for integer $m \ge 0$,

$$ay'' + by' + cy = t^m e^{rt}, \quad (a \neq 0) \quad (\ell_1)$$

Nonhomogeneous equations: General case (I)

Find one PARTICULAR solution for integer $m \ge 0$,

$$ay'' + by' + cy = t^m e^{rt}, \quad (a \neq 0) \quad (\ell_1)$$

SOLUTION:

Assume a solution of form $y(t) = e^{rt} \hat{y}(t)$,

$$y' = r e^{rt} \hat{y}(t) + e^{rt} \hat{y}'(t),$$

$$y'' = r^{2} e^{rt} \hat{y}(t) + 2 r e^{rt} \hat{y}'(t) + e^{rt} \hat{y}''(t), \text{ and}$$

$$ay'' + by' + cy = (ar^{2} + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t)$$

$$+ a e^{rt} \hat{v}''(t)$$

Nonhomogeneous equations: General case (I)

Find one PARTICULAR solution for integer $m \ge 0$,

$$ay'' + by' + cy = t^m e^{rt}, \quad (a \neq 0) \quad (\ell_1)$$

SOLUTION:

► Assume a solution of form $y(t) = e^{rt} \hat{y}(t)$,

$$y' = r e^{rt} \widehat{y}(t) + e^{rt} \widehat{y}'(t),$$

$$y'' = r^{2} e^{rt} \widehat{y}(t) + 2 r e^{rt} \widehat{y}'(t) + e^{rt} \widehat{y}''(t), \text{ and}$$

$$ay'' + by' + cy = (ar^2 + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t) + a e^{rt} \hat{y}''(t)$$

• equation (ℓ_1) becomes

$$(ar^2 + br + c)\hat{y}(t) + (2ar + b)\hat{y}'(t) + a\hat{y}''(t) = t^m.$$
 (ℓ_2)

Find one PARTICULAR solution for integer $m \ge 0$,

$$ay'' + by' + cy = t^m e^{rt}, \quad (a \neq 0) \quad (\ell_1)$$

SOLUTION:

Assume a solution of form
$$y(t) = e^{rt}\hat{y}(t)$$
,

$$y' = r e^{rt} \widehat{y}(t) + e^{rt} \widehat{y}'(t),$$

$$y'' = r^2 e^{rt} \widehat{y}(t) + 2 r e^{rt} \widehat{y}'(t) + e^{rt} \widehat{y}''(t), \text{ and}$$

$$ay'' + by' + cy = (ar^2 + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t)$$

 $+a e^{rt} \hat{v}''(t)$

• equation (ℓ_1) becomes

$$(ar^2 + br + c)\hat{y}(t) + (2ar + b)\hat{y}'(t) + a\hat{y}''(t) = t^m.$$
 (ℓ_2)

► Choose
$$\hat{y}(t) = t^s (A_0 + A_1 t + \dots + A_m t^m)$$
 to satisfy (ℓ_2) ,

$$s = \begin{cases} 0, & \text{if } ar^2 + br + c \neq 0, \\ 1, & \text{if } ar^2 + br + c = 0, 2ar + b \neq 0, \\ 2, & \text{if } ar^2 + br + c = 0, 2ar + b = 0. \end{cases}$$

Method of undetermined coefficients

Find one PARTICULAR solution for

$$y'' - 2y' + y = t^2 e^t$$

SOLUTION:

- equation $r^2 2r + 1 = 0$ has double root r = 1.
- ▶ Must try solution $y(t) = t^2 (A_0 + A_1 t + A_2 t^2) e^t$ such that

$$\frac{d^2}{dt^2} \left(t^2 \left(A_0 + A_1 t + A_2 t^2 \right) \right) = t^2,$$

► Therefore $A_0 = A_1 = 0, A_2 = \frac{1}{12}$, and

$$y(t) = \frac{1}{12} t^4 e^t.$$

§4.5 Superposition principle

Thm. 3: Let y_1 be a solution to the differential equation

$$ay'' + by' + cy = f_1(t)$$
, and

$$y_2$$
 be solution to $ay'' + by' + cy = f_2(t)$.

Then for any constants k_1 and k_2 , the function $k_1 y_1 + k_2 y_2$ is a solution to the differential equation

$$ay'' + by' + cy = k_1 f_1(t) + k_2 f_2(t),$$

§4.5 Superposition principle

Thm. 3: Let y_1 be a solution to the differential equation

$$ay'' + by' + cy = f_1(t)$$
, and

$$y_2$$
 be solution to $ay'' + by' + cy = f_2(t)$.

Then for any constants k_1 and k_2 , the function $k_1 y_1 + k_2 y_2$ is a solution to the differential equation

$$ay'' + by' + cy = k_1 f_1(t) + k_2 f_2(t),$$

PROOF: This is a simple substitution:

$$a (k_1 y_1 + k_2 y_2)'' + b (k_1 y_1 + k_2 y_2)' + c (k_1 y_1 + k_2 y_2)$$

$$= k_1 (a y_1'' + b y_1' + c y_1) + k_2 (a y_2'' + b y_2' + c y_2)$$

$$= k_1 f_1(t) + k_2 f_2(t).$$

Superposition, **Example** (I)

Find one PARTICULAR solution for

$$y'' - 2y' + y = 5t^2e^t - 2e^{2t}$$
 (ℓ)

SOLUTION:

 $y_1(t) = \frac{t^4 e^t}{12}$ is solution to

$$y'' - 2y' + y = t^2 e^t$$

 $y_2(t) = e^{2t}$ is solution to

$$y'' - 2y' + y = e^{2t}$$

Therefore

$$y(t) = 5 y_1(t) - 2 y_2(t) = \frac{5 t^4 e^t}{12} - 2 e^{2t}$$

is solution to (ℓ) .

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = t^m e^{\alpha t} \cos(\beta t)$$
 (\ell_1)

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = t^m e^{\alpha t} \cos(\beta t)$$
 (\ell_1)

SOLUTION: Let $r = \alpha + i\beta$

Assume a solution of form $y(t) = e^{rt} \hat{y}(t)$,

$$y' = r e^{rt} \widehat{y}(t) + e^{rt} \widehat{y}'(t),$$

$$y'' = r^2 e^{rt} \widehat{y}(t) + 2 r e^{rt} \widehat{y}'(t) + e^{rt} \widehat{y}''(t), \text{ an}$$

$$ay'' + by' + cy = (ar^2 + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t) + a e^{rt} \hat{y}''(t)$$

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = t^m e^{\alpha t} \cos(\beta t)$$
 (\ell_1)

Solution: Let $r = \alpha + i \beta$

Assume a solution of form $y(t) = e^{rt} \hat{y}(t)$,

$$y' = r e^{rt} \widehat{y}(t) + e^{rt} \widehat{y}'(t),$$

$$y'' = r^{2} e^{rt} \widehat{y}(t) + 2 r e^{rt} \widehat{y}'(t) + e^{rt} \widehat{y}''(t), \text{ and}$$

$$ay'' + by' + cy = (ar^2 + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t) + a e^{rt} \hat{y}''(t)$$

• equation (ℓ_1) becomes

$$(ar^2 + br + c)\hat{y}(t) + (2ar + b)\hat{y}'(t) + a\hat{y}''(t) = t^m.$$
 (ℓ_2)

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = t^m e^{\alpha t} \cos(\beta t)$$
 (\ell_1)

Solution: Let $r = \alpha + i\beta$

Assume a solution of form $y(t) = e^{rt} \hat{y}(t)$,

$$y' = r e^{rt} \widehat{y}(t) + e^{rt} \widehat{y}'(t),$$

$$y'' = r^{2} e^{rt} \widehat{y}(t) + 2 r e^{rt} \widehat{y}'(t) + e^{rt} \widehat{y}''(t),$$

$$ay'' + by' + cy = (ar^2 + br + c) e^{rt} \hat{y}(t) + (2ar + b) e^{rt} \hat{y}'(t) + a e^{rt} \hat{y}''(t)$$

• equation (ℓ_1) becomes

$$(ar^2 + br + c)\hat{y}(t) + (2ar + b)\hat{y}'(t) + a\hat{y}''(t) = t^m.$$
 (ℓ_2)

► Choose $\widehat{y}(t) = t^s (A_0 + A_1 t + \cdots + A_m t^m)$ to satisfy (ℓ_2) ,

$$s = \begin{cases} 0, & \text{if} \quad ar^2 + br + c \neq 0, \\ 1, & \text{if} \quad ar^2 + br + c = 0. \end{cases}$$

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = P_m(t) e^{\alpha t} \cos(\beta t) + Q_m(t) e^{\alpha t} \sin(\beta t), \quad (\ell)$$

where $P_m(t)$ and $Q_m(t)$ are polynomials of degree $\leq m$.

Find one PARTICULAR solution for integer $m \ge 0$, $a \ne 0$,

$$ay'' + by' + cy = P_m(t) e^{\alpha t} \cos(\beta t) + Q_m(t) e^{\alpha t} \sin(\beta t), \quad (\ell)$$

where $P_m(t)$ and $Q_m(t)$ are polynomials of degree $\leq m$. SOLUTION: Let $r = \alpha + i\beta$

Assume a solution of form

$$y(t) = t^{s}\left(\widehat{P}_{m}(t) e^{\alpha t} \cos(\beta t) + \widehat{Q}_{m}(t) e^{\alpha t} \sin(\beta t)\right), \quad \text{where}$$

$$\widehat{P}_{m}(t) = A_{0} + A_{1} t + \dots + A_{m} t^{m},
\widehat{Q}_{m}(t) = B_{0} + B_{1} t + \dots + B_{m} t^{m},
s = \begin{cases}
0, & \text{if } a r^{2} + b r + c \neq 0, \\
1, & \text{if } a r^{2} + b r + c = 0.
\end{cases}$$

Choose $A_0, \cdots, A_m, B_0, \cdots, B_m$ to satisfy (ℓ)

Superposition, **Example** (II)

Find one PARTICULAR solution for

$$y'' - 2y' + 2y = 5 t e^{t} \sin(t) - 2 e^{2t}$$
 (ℓ)

SOLUTION:

Let $y_1(t) = t (A_0 + A_1 t) e^t \cos(t) + t (B_0 + B_1 t) e^t \sin(t)$ be solution to $y'' - 2y' + y = t e^t \sin(t)$,

leading to
$$y_1(t) = \frac{t}{4} e^t \left(\sin(t) - t \cos(t) \right)$$

 $y_2(t) = \frac{1}{2} e^{2t}$ is solution to

$$y'' - 2y' + 2y = e^{2t}$$

Therefore

$$y(t) = 5 y_1(t) - 2 y_2(t) = \frac{5}{4} t e^t (\sin(t) - t \cos(t)) - e^{2t}$$

is solution to (ℓ) .

Existence and Uniqueness: Nonhomogeneous Case (I)

Thm 4. For any real numbers a, b, c, t_0, Y_0 , and Y_1 with $a \neq 0$, suppose $y_p(t)$ is a particular solution to

$$ay'' + by' + cy = f(t)$$
 (ℓ_1)

in an interval I containing t_0 and that $y_1\left(t\right)$ and $y_2\left(t\right)$ are linearly independent solutions to

$$ay'' + by' + cy = 0.$$

Then there exists a unique solution in I to (ℓ_1) in the form

$$y(t) = y_p(t) + c_1 y_1(t) + c_2 y_2(t)$$

that satisfies initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1. \quad (\ell_2)$$

Existence and Uniqueness: Nonhomogeneous Case (I)

Thm 4. For any real numbers a, b, c, t_0, Y_0 , and Y_1 with $a \neq 0$, suppose $y_p(t)$ is a particular solution to

$$ay'' + by' + cy = f(t)$$
 (ℓ_1)

in an interval I containing t_0 and that $y_1(t)$ and $y_2(t)$ are linearly independent solutions to

$$ay'' + by' + cy = 0.$$

Then there exists a unique solution in I to (ℓ_1) in the form

$$y(t) = y_p(t) + c_1 y_1(t) + c_2 y_2(t)$$

that satisfies initial conditions

$$y(t_0) = Y_0, \quad y'(t_0) = Y_1. \quad (\ell_2)$$

PROOF: $\hat{y}(t) \stackrel{\text{def}}{=} y(t) - y_p(t)$.

▶ y(t) is solution in I to (ℓ_1) with initial conditions (ℓ_2) $\iff \widehat{y}(t)$ is solution to (ℓ_3)

$$ay'' + by' + cy = 0$$
, $y(t_0) = Y_0 - y_p(t_0)$, $y'(t_0) = Y_1 - y_p'(t_0)$. $(\ell_3)_{0 < \infty}$

Existence and Uniqueness: Nonhomogeneous Case (II)

PROOF: $\widehat{y}(t) \stackrel{\text{def}}{=} y(t) - y_p(t)$.

• y(t) is solution in I to (ℓ_1) with initial conditions (ℓ_2) $\iff \widehat{y}(t)$ is solution to (ℓ_3)

$$ay'' + by' + cy = 0$$
, $y(t_0) = Y_0 - y_p(t_0)$, $y'(t_0) = Y_1 - y_p'(t_0)$. (ℓ_3)

 $ightharpoonup \widehat{y}(t) = c_1 y_1(t) + c_2 y_2(t)$ is solution to $(\ell_3) \iff$

$$\begin{pmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} Y_0 - y_p(t_0) \\ Y_1 - y'_p(t_0) \end{pmatrix}. \quad (\ell_4)$$

▶ By **Lemma 1**, linear independence of $y_1(t)$ and $y_2(t)$ implies

$$\det \left(\begin{array}{cc} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{array} \right) \neq 0.$$

Therefore, there is a unique solution in (ℓ_4) , thus a unique solution in (ℓ_3) .

Damped mass-spring oscillator with external force (I)

$$m \times y'' + b \times y' + k \times y = \mathbf{F_{ext}}(t).$$

Find motion for $\mathbf{F}_{\mathbf{ext}}(t) = (5\cos(t) + 5\sin(t)) \text{ kg*m/sec}^2$,

$$m = 1 \text{kg}, b = 2 \text{kg/sec}, k = 2 \text{kg/sec}^2, y(0) = 1 \text{m}, y'(0) = 2 \text{m/sec}.$$

SOLUTION: IVP is

$$y'' + 2y' + 2y = 5\cos(t) + 5\sin(t)$$
, $y(0) = 1$, $y'(0) = 2$.

Roots to $r^2 + 2r + 2 = 0$ are $r = -1 \pm i$, so

▶ A particular solution takes form $y_p(t) = A\cos(t) + B\sin(t)$.

Setting
$$y_p'' + 2y_p' + 2y_p = 5\cos(t) + 5\sin(t)$$

leads to
$$y_p(t) = -\cos(t) + 3\sin(t)$$
.

 $\hat{y}(t) \stackrel{\text{def}}{=} y(t) - y_p(t)$ satisfies

$$\widehat{y}'' + 2\widehat{y}' + 2\widehat{y} = 0,$$

with initial conditions $\hat{y}(0) = 1 - y_p(0) = 2$, $\hat{y}'(0) = 2 - y_p'(0) = -1$.

▶ IVP solution
$$\widehat{y}(t) = 2e^{-t}\cos(t) + e^{-t}\sin(t)$$

Damped mass-spring oscillator with external force (II)

Oscillator motion

$$y(t) = \hat{y}(t) + y_p(t)$$

= $2e^{-t}\cos(t) + e^{-t}\sin(t) - \cos(t) + 3\sin(t)$.

§4.6 Variation of parameters (I)

Let $y_1(t)$ and $y_2(t)$ be two linearly independent solutions for

$$ay'' + by' + cy = 0.$$
 (ℓ_1)

We look for a particular solution to

$$ay'' + by' + cy = f(t)$$
 (ℓ_2)

§4.6 Variation of parameters (I)

Let $y_1(t)$ and $y_2(t)$ be two linearly independent solutions for

$$ay'' + by' + cy = 0.$$
 (\ell_1)

We look for a particular solution to

$$ay'' + by' + cy = f(t)$$
 (ℓ_2)

- ▶ For any constants c_1 , c_2 , $y_h(t) = c_1$, $y_1(t) + c_2 y_2(t)$ is a solution to (ℓ_1) .
- Find particular solution to (ℓ_2) in the form $y_p(t) = v_1(t) y_1(t) + v_2(t) y_2(t)$.

Will derive two equations that determine $v_1(t)$ and $v_2(t)$

$$y_p(t) = v_1(t) y_1(t) + v_2(t) y_2(t)$$
 is particular solution to
$$ay_p'' + by_p' + cy_p = f(t) \qquad (\ell_1)$$

$$y_p\left(t
ight) = v_1\left(t
ight)\,y_1\left(t
ight) + v_2\left(t
ight)\,y_2\left(t
ight)$$
 is particular solution to
$$a\,y_p'' + b\,y_p' + c\,y_p = f\left(t
ight) \qquad \left(\ell_1
ight)$$

$$y'_{p}(t) = v'_{1}(t) y_{1}(t) + v'_{2}(t) y_{2}(t) + v_{1}(t) y'_{1}(t) + v_{2}(t) y'_{2}(t),$$
Choose
$$v'_{1}(t) y_{1}(t) + v'_{2}(t) y_{2}(t) = 0. (\ell_{2})$$

$$y_p''(t) = v_1'(t) y_1'(t) + v_2'(t) y_2'(t) + v_1(t) y_1''(t) + v_2(t) y_2''(t).$$

Equation (ℓ_1) is

$$f(t) = a (v'_{1}(t) y'_{1}(t) + v'_{2}(t) y'_{2}(t) + v_{1}(t) y''_{1}(t) + v_{2}(t) y''_{2}(t)) + b (v_{1}(t) y''_{1}(t) + v_{2}(t) y''_{2}(t)) + c (v_{1}(t) y_{1}(t) + v_{2}(t) y_{2}(t))$$

Re-arranging terms,
$$f(t) = a \left(v_1'(t) y_1'(t) + v_2'(t) y_2'(t) \right) + v_1(t) \left(a y_1'' + b y_1' + c y_1 \right) + v_2(t) \left(a y_2'' + b y_2' + c y_2 \right) = a \left(v_1'(t) y_1'(t) + v_2'(t) y_2'(t) \right). \quad (\ell_3)$$

Method of Variation of Parameters

Equations for $v_1(t)$, $v_2(t)$:

$$v'_{1}(t) y_{1}(t) + v'_{2}(t) y_{2}(t) = 0,$$

$$v'_{1}(t) y'_{1}(t) + v'_{2}(t) y'_{2}(t) = \frac{f(t)}{a}.$$

Set **wron**
$$(t) \stackrel{def}{=} \det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix}$$
, then

$$v_1'(t) = -\frac{f(t) y_2(t)}{a \operatorname{wron}(t)}, \quad v_2'(t) = \frac{f(t) y_1(t)}{a \operatorname{wron}(t)}.$$

Therefore,

$$\begin{aligned} v_1\left(t\right) &= -\int^t \frac{f\left(\tau\right) \ y_2\left(\tau\right)}{a \ \mathbf{wron}\left(\tau\right)} d \ \tau, \quad v_2\left(t\right) = \int^t \frac{f\left(\tau\right) \ y_1\left(\tau\right)}{a \ \mathbf{wron}\left(\tau\right)} d \ \tau. \end{aligned}$$
 and
$$y_p\left(t\right) = v_1\left(t\right) \ y_1\left(t\right) + v_2\left(t\right) \ y_2\left(t\right) \quad \text{is solution to}$$

$$ay'' + by' + cy = f(t)$$

Method of Variation of Parameters: **Example** (I)

Find one PARTICULAR solution on $\left(-\frac{\pi}{2},\ \frac{\pi}{2}\right)$ for

$$y'' + y = \tan(t) \quad (\ell)$$

SOLUTION:

- ► Two linearly independent solutions for y'' + y = 0 are $y_1(t) = \cos(t)$, and $y_2(t) = \sin(t)$.
- ▶ Solution to (ℓ) : $y_p(t) = v_1(t) y_1(t) + v_2(t) y_2(t)$, with
- ▶ wron $(t) \stackrel{def}{=} \det \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} = 1$, and

$$\begin{aligned} v_1(t) &= -\int^t \tan(\tau) \sin(\tau) \ d\tau = -\int^t \frac{1 - \cos^2(\tau)}{\cos(\tau)} \ d\tau \\ &= \sin(t) + \ln\left(\tan\left(\frac{\pi - 2t}{4}\right)\right) + c_1, \\ v_2(t) &= \int^t \tan(\tau) \cos(\tau) \ d\tau = -\cos(t) + c_2. \end{aligned}$$

Method of Variation of Parameters: Example (I)

Find one PARTICULAR solution on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for

$$y'' + y = \tan(t) \quad (\ell)$$

SOLUTION: General solution

$$y(t) = v_1(t) \cos(t) + v_2(t) \sin(t)$$

= $\cos(t) \ln\left(\tan\left(\frac{\pi - 2t}{4}\right)\right) + c_1\cos(t) + c_2\sin(t)$.

Setting $c_1 = c_2 = 0$ gives particular solution

$$y_p(t) = \cos(t) \ln\left(\tan\left(\frac{\pi-2t}{4}\right)\right).$$

Method of Variation of Parameters: Example (II)

Find ALL solutions for variable-coefficient DE

$$t^2 y'' - 4 t y' + 6 y = 4 t^3, \quad t > 0, \quad (\ell)$$

SOLUTION:

Lucky break:
$$y_1(t) = t^2$$
, $y_2(t) = t^3$ solutions for
$$t^2 y'' - 4 t y' + 6 y = 0.$$

- ► Solution to (ℓ) : $y(t) = v_1(t) y_1(t) + v_2(t) y_2(t)$, with
- wron $(t) \stackrel{def}{=} \det \begin{pmatrix} t^2 & t^3 \\ 2t & 3t^2 \end{pmatrix} = t^4$, and

$$v_1(t) = -\int^t \frac{4\tau^3\tau^3}{\tau^2\tau^4} d\tau = -4t + \hat{c}_1,$$

$$v_2(t) = \int^t \frac{4\tau^3\tau^2}{\tau^2\tau^4} d\tau = 4\ln(t) + \hat{c}_2.$$

General solution

$$y(t) = v_1(t) t^2 + v_2(t) t^3 = 4 t^3 \ln(t) + c_1 t^2 + c_2 t^3.$$