4.1 Damped mass—spring oscillator (I)

mass m attached to a spring fixed at one end

mass m moves due to external force Fext ()

mass m is slowed down by SPRING and FRICTION.

Goal: derive a differential equation to describe the motion

vV vVvyYyysy

y =y (t), time-dependent displacement from EQUILIBRIUM POINT.

b

Equilibrium ™ —
point

Figure 4.1 Damped mass-spring oscillator



4.1 Damped mass—spring oscillator (1)

Newton's second Iaw—{ total force = mass m times acceleration

» total force:
def

» Spring resistance: Fspring = —ky, k= stiffness.
» Friction:
d . .
Friction “ b di)t_i = —by', b= damping coefficient

» total force = Fext (t) —ky — by’

. . 2
» mass m times acceleration = m Z—t{ =my".

Differential equation according to Newton's second law

my” = Fext (t) — ky —by’, or

m xy" 4+ b _xy' + _k xy = Fext(t),

inertia damping stiffness

N
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§4.2 Homogeneous linear equations

» Homogeneous linear 29 order constant-coefficient differential
equation (a # 0)

ay"+by' +cy=0, (),
> General linear 29 order constant-coefficient DE (a#0)
ay"+ by +cy="»1(t), (t).

To solve (¢1),
» assume a solution y (t) = e"* for some constant r.
» substitute y (t) = e"* into (¢1) to get

arle’t+breft+ce't=0 < ar’+br+c=0.

» possible solutions for r

def —b:i:\/b2—4ac

r=ng2 = 22 .

» possible solutions for y (t)

y(t)=ent et

44



Homogeneous linear equations: Example
Find all solutions to

y'+5y =6y =0, (1)
SOLUTION: Roots to
rP+5r—6=0
6t

are r = 1, —6, leading to solutions y; (t) = ef, y> (t) = e~

i +5y1—6y1=0, y) +5y,—6y2=0, ({2)

> Let y (t) = ciy1 (t) + c2y2 (t) € Span {y1 (t), y2(£)}. Then

by (£2)

y'4+5y =6y =c1 (yi +5y1 —6y1)+c2 (v +5y; —6y2)

» So ANY function in Span {y1 (t), y2 (t)} is a solution to (¢1)

‘ Need additional conditions for unique solution‘

0.
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Solve Initial Value Problem (IVP): Example

y'+5y' =6y =0, y(0)=0, y'(0)=-1, (&)

SoLUTION: DE has solutions in the form y (t) = c; et + ;e 0%
So y'(t)=cref —6ce 0 leading to
y(0) = a+a =0,
y/(O) = —6C2 = —1.
With solution ¢; = —%, o= % So solution to IVP
1 1
y(t)=—-Zef +-e 0%

7 7

6
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Existence and Uniqueness: Homogeneous Case

Thm 1. For any real numbers a, b, ¢, ty, Yo, and Y7 with a # 0,

there exists a unique solution to IVP
ay’+by' +cy=0, y(to)="Yo, y(to)=VY1. (1)

The solution is valid for all t € (—o0, +00).
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Existence and Uniqueness: Homogeneous Case
Thm 1. For any real numbers a, b, ¢, ty, Yo, and Y7 with a # 0,
there exists a unique solution to IVP

ay"+by' +cy=0, y(to)=Yo, y(to)=VY1. (t)

The solution is valid for all t € (—o0, +00).

™~
(Can’tboth be
solutions)

Wi fmmmmmmmmmm e

I
I
I
I
i
Slope y'(t) |
I
|

Figure 4.6 (1), y' (1) determine a unigue solution



Linear Independence of Two Functions

Definition 1. Functions y; (t) and y» (t) are

> linearly independent on the interval | <= neither of them
is a constant multiple of the other on /,

» linearly dependent on / Otherwise.

EXAMPLE Let y; (t) = sin(t) and y» (t) = |sin(t)|. Then
y1 (1) and y, (£) are
» linearly independent on the interval (—7, +7),

» but linearly dependent on the interval (0, +7).
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Representation of Solutions to IVP

Thm 2. For any real numbers a, b, ¢, with a # 0, let
y1 (t) and y» (t) be two linearly independent solutions to

ay"+by +cy=0.

Then there exist unique constants ¢; and ¢ so that
y (t) = cay1 (t) + c2 y2 (t) satisfies the initial conditions

y(to) = Yo, ¥y (to)= V1.

The solution is valid for all t € (—o0, +00).



Representation of Solutions to IVP

Thm 2. For any real numbers a, b, ¢, with a # 0, let
y1 (t) and y» (t) be two linearly independent solutions to

ay"+by +cy=0.

Then there exist unique constants ¢; and ¢ so that
y (t) = cay1 (t) + c2 y2 (t) satisfies the initial conditions

y(to) = Yo, ¥y (to)= V1.

The solution is valid for all t € (—o0, +00).

| Will prove Thm 2. with Thm 1. |
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Condition for Linear Dependence of Solutions

Lemma 1. For any real numbers a, b, ¢, with a # 0, let
y1 (t) and y» (t) be two solutions to

ay" +by' +cy=0

that satisfy at any point 7

yi(r) ya(r) \ _ LY — v () ve (1) —
det (200 200 ) —n () B0 - A () (1) =0

T
(Wronskian of y; (t) and y» (t))

then y1 (t) and y» (t) must be linearly dependent on (—oo, +00).

10 /44



Lemma 1. y; (t) and y» (t) are solutions to
ay"+by' +cy=0 ()

that satisfy y1 (7) y5 (1) — y1 (7) y2(7) = 0. Need to show

’yl (t) and y» (t) must be linearly dependent on (—oo, +00) ‘

11 /44



Lemma 1. y; (t) and y» (t) are solutions to
ay"+by' +cy=0 ()

that satisfy y1 (7) y5 (1) — y1 (7) y2(7) = 0. Need to show

’yl (t) and y» (t) must be linearly dependent on (—oo, +00) ‘

PROOF:
> If y1 (1) # 0, then y3(t) def <Y2(T)> y1 (t) is solution to (¢),

(1)
)= (20) 5 =50).

yi(7)

\]

n(0) = (20) n)=ne). %

yi(7)

11 /44



Lemma 1. y; (t) and y» (t) are solutions to
ay"+by' +cy=0 ()

that satisfy y1 (7) y5 (1) — y1 (7) y2(7) = 0. Need to show

’yl (t) and y» (t) must be linearly dependent on (—oo, +00) ‘

PROOF:
> If y1 (1) # 0, then y3(t) def <Y2(T)> y1 (t) is solution to (¢),

(1)
)= (20) 5 =50).

yi(7)

\]

n(0) = (20) n)=ne). %

yi(7)

> y3(t) and y» (t) satisfy the same initial conditions at 7.
By Thm. 1 they must be same on (—o0, +00).
=  y»(t) is a constant multiple of y; (t).
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Lemma 1. y; (t) and y» (t) are solutions to
ay"+by' +cy=0 ()

that satisfy y1 (7) y5 (1) — y1 (7) y2(7) = 0. Need to show
’yl (t) and y» (t) must be linearly dependent on (—oo, +00) ‘

PROOF:
> If y1 (1) # 0, then y3(t) def <Y2(T)> y1 (t) is solution to (¢),

(1)
)= (20) 5 =50).

yi(7)

\]

n(0) = (20) n)=ne). %

yi(7)

> y3(t) and y» (t) satisfy the same initial conditions at 7.
By Thm. 1 they must be same on (—o0, +00).
=  y»(t) is a constant multiple of y; (t).

» See book for case y; (1) =0 [l

11 /44



Thm 2. Let y; (t) and y» (t) be linearly independent solutions to
ay" +by' +cy=0. (f1)

Then there exist unique constants ¢; and ¢ so that
y (t) = ay1 (t) + c2 y2 (t) satisfies the initial conditions

y(to) = Yo, y' (o)=Y (2)

12 /44



Thm 2. Let y; (t) and y» (t) be linearly independent solutions to
ay" +by' +cy=0. (f1)

Then there exist unique constants ¢; and ¢ so that
y (t) = ay1 (t) + c2 y2 (t) satisfies the initial conditions

y(to) = Yo, y' (o)=Y (2)

PROOF: y (t) satisfies (¢1) for any c1, c2. (¢2) equivalent to

(48 5)(2)-(0)

1 (o) ys(to) o7 i)’

which has a unique solution in c¢1, ¢, since the coefficient matrix is
invertible by Lemma 1:

y1(to) y2(to)
CIAREAREL

12/44



Distinct Real Roots

» Homogeneous linear 2 order constant-coefficient DE (a#0)
ay"+by' +cy=0, (t),
» distinct real roots in equation ar?> + br+c=0.

def —b+ Vb2 —4ac

rn, n = 22 .

» Linearly independent real solutions to (¢1)
n(t)=e"t y(t)=e?".

(3l

2 (t) ) (r2+r1) t
=(n—n)e 75 0.

13 /44



Distinct Real Roots: Example
> VP

y'+5y' =6y =0, y(0)=0, y'(0)=-1, ()

» distinct real roots r; = 1, » = —6 to equation r>+5r—6 = 0.
» (/1) has solutions in the form y (t) = c; et + co e °%.
So y'(t)=cief —6ce®f Initial conditions lead to

y (0) = ca+c =0,
y’ (0) = C — 6C2 = -1.
With solution ¢ = —%, C = %

» So solution to IVP

14 /44



Double Real Root
» Homogeneous linear 21 order constant-coefficient DE (a #0)
ay’+by' +cy=0, (f),

» double real root in equation ar’> + br+c=0.

b
n= ———, with b>—4ac=0.
2a

» One solution to (¢1)

» y1(t) = et is solution to (¢1); another is y, (t) = tent:
va(t) = e fny(t), v (t)=2ne" + 1y (1)
ayy +bys+cy, = (2na+b)et+ (arf+br+c)y(t)=0.

> y1(t) and y» (t) are linearly independent

yi(t) y2(t) \ _ j@n)t
det(y{(t) yé(t)>_ 70
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Double Real Roots: Example
> VP

y'+4y' +4y =0, y(0)=0, y'(0)=-1, (&)

v

v

(1) has solutions in the form y (t) = c; e 2t + cp t e~ 21,
So y'(t)=-2ce %+ o (e_Zt — 2te_2t) ,
Initial conditions lead to

y(O) = :0,
y(0) = —2c+c=-1

v

With solution ¢; =0, co = —1.
So solution to IVP

v

y(t) = —te 2%

double real root n = r, = —2 to equation rP4+4r+4=0.

16
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4.3 Complex Conjugate Roots ()

» Homogeneous linear 21 order constant-coefficient DE (a#0)

ay" 4+ by +cy=0, with b>—4ac<0 (f),

» complex conjugate roots in ar? + br + c = 0 with 2 = —1:
—b+ Vb2 —4ac ger b Vadac— b?

n, rn= = atif, with a= 55 8=

2a

» Linearly independent solutions to (/1)

7 (1) = el gy (1) = eleiNt

2a

y2(t) ) :—2i662at7£0.

17 /44



Complex Conjugate Roots (II)
» Homogeneous linear 21 order constant-coefficient DE (a #0)

ay" 4+ by +cy=0, with b>—4ac<0 (¢),

» Linearly independent solutions to (¢1)

. . Viac—_ b2
yi(t) = ey, (1) = eIt o= _Tby B = 32Ca =

» Euler’s formula: e(®+8)t = et (cos (B t) £ isin (B t)).
» Linearly independent solutions to (/1)

() = S0 (D)4 ()= cos(31),
P2(t) = = (1) —ya(t) = etsin(B1).

2i
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Complex Conjugate Roots: Example
> IVP
y' =4y’ +5y=0, y(0)=0, y'(0)=-1, (h)

complex conjugate roots i, =2+ i to r2—4r+5=0.
(1) has solutions y (t) = €2 (c1 cos (t) + co sin (t)).

v

v

So y(t)=e?"((2c1 + ) cos(t) + (2c — c1) sin (t))

v

Initial conditions lead to
y (0) = = 0,
y'(O) = 2 +c=-1.

With solution ¢; =0, ¢o = —1.
So solution to IVP

v

y(t) = —e?tsin(t).

19 /44



Damped mass—spring oscillator: Example (1)

m xy” + b xy + k xy = Fext(t),

inertia damping stiffness

» Determine the motion when
m = 36kg, b = 12kg/sec, k = 37kg/sec?, y (0) = 0.7m, y’ (0) = 0.1m/sec.
SoLuTION: IVP is
36y +12y' +37y =0, y(0)=0.7, y’'(0)=0.1.
Roots to 36 r2 +12r+37 =0 are r = —%ii, SO

y(t) = e s (cicos (t) + cpsin (b)), y(0)=c
y'(t) = e s ((Q - %) cos(t) — (Cl + %) sin(t)> Y (0) = — %

Initial conditions lead to ¢; = 0.7, ¢ = 1.3/6.
y (t) = e 5 (0.7 cos (t) + 1.3/65sin (t)).

20 /44



Damped mass—spring oscillator: Example (II)

» After how many seconds will the mass first cross the
equilibrium point?
SOLUTION: Solution to IVP is
y(t) = e 5(0.7cos(t)+ 1.3/6sin(t))
def 0.7

= 1/0.72+ (1.3/6)% e s sin(t + to), sin(to) .
0.72 + (1.3/6)?

Setting y (t) = 0 gives t = m — to ~ 1.87(sec).

Displacement as function of time

™

\/\
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§4.4 Nonhomogeneous equations

» Nonhomogeneous linear 219 order constant-coefficient
differential equation

ay"+by' +cy="~f(t), a#0, (¢

» Solve (¢) for specific types of f (t).
» Focus on one PARTICULAR solution for each f (t) for now.



Nonhomogeneous equations, Example (1)
Find one PARTICULAR solution for
" /
y +3y +2y =3t

SOLUTION:
» Assume a solution of form y (t) = At + B,

y/:A’ y”:Oa
and y"+3y' +2y=3A+2(At+B)=3t

> Which implies2A=3,3A4+2B=0
> Therefore A = %, B = —% and

3 9
t)= -t — —.
y (t) >t 2

23 /44



Nonhomogeneous equations, Example (II)

Find one PARTICULAR solution for
y'+3y +2y=10e*"

SOLUTION:

» Assume a solution of form y (t) = A €3,
y' =3Ae3t, y' =32Ae3  and
V'43y 42y =32 A3t 43.3A3142. A3t =20A3t =103t

» Therefore A = % and

1
y(t) = §e3t.

24 /44



Nonhomogeneous equations, Example (II1)
Find one PARTICULAR solution for

y"+3y +2y =sin(t)

SOLUTION:
» Assume a solution of form y (t) = Asin(t) + Bcos(t), then

y' = Acos(t) — Bsin(t), y” = —Asin(t) — Bcos(t), and

y"+3y'+2y = —(Asin(t)+ Bcos(t))+ 3 (Acos(t) — Bsin(t))
+2 (Asin (t) + Bcos(t))
= (A—3B)sin(t)+ (B +3A)cos(t)=sin(t),
» which implies A—-3B =1, B+3A=0.

» Therefore A = %, B = —1—30 and

y(t) = 1—10 (sin(t) —3cos(t)).

25 /44



Nonhomogeneous equations, Example (1V)
Find one PARTICULAR solution for

y”—i—4y:5t26t

SOLUTION:
» Assume a solution of form y (t) = (At?+ Bt + C) e,
Y = (QAt+B)e'+ (At?+Bt+ () e,

y' = 2Ae'+2(2At+B) e+ (AP +Bt+C) e

and

Y'+4y = 2Ae'+2(2At+B) e +5(AP +Bt+C)e

= (5A?+(4A+5B)t+(2A+2B+5C)) ¢
> which implies 5A=54A+5B=0,2A+2B+5C=0.

» Therefore A=1, B= _%’ C = _%’ and

4 2

2 t
t)y=(t2—-t— =) e".

v (t) ( 5 25>e

t

26
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Nonhomogeneous equations, Example (V)
Find one PARTICULAR solution for

yl/+y/:5t

SOLUTION:
» Assume a solution of form y (t) = At?> + Bt + C,

y' = 2At+B, y'=2A
and
y'+y = 2A+2At+B=5t

» which implies2A=52A+ B =0.
» Therefore A = %, B = -5, and
5

2
t)=—-t°—>bt.

27 / 44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0,

ay"+by' +cy=t"e", (a#£0) (f1)

28 / 44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0,

ay"+by' +cy=t"e", (a#£0) (f1)

SOLUTION:
» Assume a solution of form y (t) = e" 'y (t),
Y o= rerty(n)+ e ().
y' = rPety(t)+2re’ty (t)+ ety (t), and
ay’+by' +cy = (arf+br+c) e 'y(t)+(2ar+b) ey (t)

+a erty//(t)

28 /44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0,

ay"+by' +cy=t"e", (a#£0) (f1)

SOLUTION:
» Assume a solution of form y (t) = e" 'y (t),
Y o= rerty(n)+ e ().
y' = rPety(t)+2re’ty (t)+ ety (t), and
ay’+by' +cy = (arf+br+c) e 'y(t)+(2ar+b) ey (t)

+a erty// (t)
» equation (/1) becomes

(arf +br+c)y(t)+ar+b)y (t)+ay"(t) =t". ()

28 /44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0,
ay"+ by +cy=t"et, (a#£0) (&)
SOLUTION:

» Assume a solution of form y (t) = e" 'y (t),
Y o= e ety (1),
y// — r2 ertf/(t) 4 2re”)7’(t) + ertj/\//(t),
ay// _"_ by/ _"_ C_y

and

(ar’ +br+c) ety
+a erty//(t)

» equation (/1) becomes

(t)+(2ar+b) "ty (t)

(ar’ +br+c)y(t)+(2ar+b)y (t)+ay” (t) =t".

(£2)

» Choose y (t) =t° (Ao + A1t + -+ Ay t™) to satisfy (£2),

0, if ar>+br+c#0,
s=<{ 1, if ar’4+br+c=0,2ar+b#0,
2

. if ar’+br+c=0,2ar+b=0.

28 /44



Method of undetermined coefficients

Find one PARTICULAR solution for
y”—2y’—|—y:t26t

SOLUTION:
» equation r> —2r 41 =0 has double root r = 1.
» Must try solution y (t) = t? (Ao + A1 t + Ay t2) e such that

d2
o) (2 (Ao + ALt + Ay t?)) = 12,
» Therefore Ag = A1 =0,A; = %, and
1
y(t)= —=t*et.

12
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§4.5 Superposition principle
Thm. 3: Let y; be a solution to the differential equation

ay"+by +cy=~H(t), and

y» besolutionto ay”+ by +cy=h(t).

Then for any constants k; and kp, the function ki y1 + ko y» is a
solution to the differential equation

ay"+by +cy=kf(t)+khri(t),

30 /44



§4.5 Superposition principle
Thm. 3: Let y; be a solution to the differential equation
ay"+by +cy=~H(t), and

y» besolutionto ay”+ by +cy=h(t).

Then for any constants k; and kp, the function ki y1 + ko y» is a
solution to the differential equation

ay"+by +cy=kf(t)+khri(t),

PROOF: This is a simple substitution:

a(kiyi+koy)" +b (kiyi+ koy2) + ¢ (kiyi + ko y2)
ki (ayf +byi+cy1) + ke (ays + bys+cy)
klfl(t)—l—kng(t).

30 /44



Superposition, Example (1)
Find one PARTICULAR solution for

y' =2y 4y =512t —26%t (V)

SOLUTION:

4 . .
> y1(t) = 5 is solution to

y”—2y'+y:t2et

2t is solution to

> y»(t)=e
y//_2y/+y: e2t
» Therefore

5t% et
) 2t
12 €

y(t) =5xn(t) =2y (t) =

is solution to (¢).

31/44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0, a # 0,

ay"+by' +cy=t"e""cos(Bt) (f1)
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Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0, a # 0,

ay"+by' +cy=t"e""cos(Bt) (f1)

SOLUTION: Let r=a+if
» Assume a solution of form y (t) = ety (t),

y/ — re’t)//\(t)—i—ertj/\/(t),
y' o= ety () +2re Y (1) + €Y (), and
ay”+by’+cy — (ar2+br+C) e’ty(t)+(2ar+b) ertj/\/(t)

+a erty//(t)

32 /44



Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0, a # 0,

ay"+by' +cy=t"e""cos(Bt) (f1)

SOLUTION: Let r=a+if
» Assume a solution of form y (t) = ety (t),

y/ — rert)//\(t)—i—ertj/\/(t),
y' o= ety () +2re Y (1) + €Y (), and
ay”+by’+cy — (ar2+br+C) e’ty(t)+(2ar+b) ertj/\/(t)

+a erty// (t)
» equation (/1) becomes

(arf +br+c)y(t)+ar+b)y (t)+ay"(t) =t". ()
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Nonhomogeneous equations: General case (I)
Find one PARTICULAR solution for integer m > 0, a # 0,

ay"+by' +cy=t"e""cos(Bt) (f1)

SOLUTION: Let r=a+if
» Assume a solution of form y (t) = ety (t),

y = re"'y(t)+ ey (1),
y' o= ety () +2re Y (1) + €Y (), and
ay”+by’+cy — (ar2+br+C) e’ty(t)+(2ar+b) ertj/\/(t)

+a erty// (t)
» equation (/1) becomes

(arf +br+c)y(t)+ar+b)y (t)+ay"(t) =t". ()

» Choose y (t) =t° (Ao + A1t + -+ Ay t™) to satisfy (£2),

[0, if ar’+br+c#0,
°= 1, if ar?+br+c=0.
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Nonhomogeneous equations: General case (l1)

Find one PARTICULAR solution for integer m > 0, a # 0,
ay"+by +cy=Pn(t) e*fcos(Bt)+Qm(t) e*'sin(Bt), (¢)

where Pp, (t) and Qp, (t) are polynomials of degree < m.

33 /44



Nonhomogeneous equations: General case (l1)
Find one PARTICULAR solution for integer m > 0, a # 0,

ay"+by +cy=Pn(t) e*tcos(Bt)+Qm(t) e*'sin(pt),

where Pp, (t) and Qp, (t) are polynomials of degree < m.
SOLUTION: Let r=a+ i

» Assume a solution of form

(4)

y(t)=1t (ﬁm (t) et cos (B t) + Qm(t) e sin (3 t)) ., where

)

m(t) = Ao+Art+---+Ant",
(t) = Bo+Bit+---+Bnt",
s — 0, if ar?+br+c#0,
N 1, if ar’+br+c=0.

D)

m

Choose Ag, -+ ,Am, Bo, -+ , B to satisfy (¢)
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Superposition, Example (I1)
Find one PARTICULAR solution for

y' =2y 42y =5telsin(t) —2e%t (¢)

SOLUTION:
» Let y1(t) =t (Ao + Art)efcos(t)+t (Bo+ Bit)elsin(t)

be solution to  y" — 2y’ +y = te'sin(t),

leading to y; (t) = £ e (sin(t) — t cos (t))
> yo(t) = 1 €2t is solution to

y//_2y/+2y:e2t
> Therefore
5
y(t)=5y1(t) =2y (t) = 2 tet (sin(t) — tcos(t)) — 2t

is solution to ().
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Existence and Uniqueness: Nonhomogeneous Case (1)

Thm 4. For any real numbers a, b, ¢, tp, Yo, and Y7 with a # 0,
suppose y, (t) is a particular solution to

ay"+by +cy=»F(t) ()

in an interval / containing ty and that y; (t) and y» (t) are linearly
independent solutions to

ay"+by +cy=0.
Then there exists a unique solution in / to (¢1) in the form
y(t) =yp(t) +ay(t)+ 2y ()
that satisfies initial conditions

y(to) = Yo, y' (o)=Y (2)
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Existence and Uniqueness: Nonhomogeneous Case (1)
Thm 4. For any real numbers a, b, ¢, tp, Yo, and Y7 with a # 0,
suppose y, (t) is a particular solution to

ay"+by +cy=»F(t) ()

in an interval / containing ty and that y; (t) and y» (t) are linearly
independent solutions to

ay"+by +cy=0.
Then there exists a unique solution in / to (¢1) in the form
y(t) =yp(t) +ay(t)+ 2y ()
that satisfies initial conditions
y(to) = Yo, y'(t)=V1. ()
/., def
PROOF: ¥ (t) Z y(t) — yp(t).
» y(t) is solution in / to (¢1) with initial conditions (¢7)
<= y(t) is solution to (¢3)
ay"+by'+cy =0, y(to) = Yo—yp(to), y'(to)=Yi—y,(to). (£3)
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Existence and Uniqueness: Nonhomogeneous Case (1)
~ def
PROOF: y(t) = y(t) — yp(1).
» y(t) is solution in / to (¢1) with initial conditions (¢7)
<= y(t) is solution to (¢3)

ay"+by'+cy =0, y(to) = Yo—yp(to), y'(to)=Yi—y,(to). (£3)
» y(t) = ayi (t) + c2 y2 (t) is solution to ({3) <~
(y:}(fo) v (to) > < a ) _ < Yo = ¥p (t0) ) (04)
1 () v (to) 2 Y1 =y (to)
» By Lemma 1, linear independence of y; (t) and y» (t) implies

y1(to) y2(to)
det( Vi (to) 5 (o) > 70

Therefore, there is a unique solution in (¢4), thus a unique
solution in (¢3).
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Damped mass—spring oscillator with external force (1)
mxy” + bxy 4+ kxy = Fextl(t).
» Find motion for Fext (t) = (5cos (t) + 5sin (t)) kg*m/sec?,
m = lkg, b = 2kg/sec, k = 2kg/sec?,y (0) = 1m, y’ (0) = 2m /sec.
SOLUTION: IVP is
y"+2y'+2y =5cos(t) +5sin(t), y(0)=1,y (0)=2.

Rootsto r> +2r+2=0are r=—141, so
» A particular solution takes form y, (t) = Acos(t) + Bsin(t).

Setting y, + 2y, + 2y, = 5cos(t) + 5sin (t)
leads to y, (t) = —cos (t) + 3sin(t).
> 7 (1) Ly (t) — y, (t) satisfies
y'+2y' +2y =0,
with initial conditions y (0) = 1-y, (0) =2, y'(0) =2-y,(0) = —1.
» IVP solution y (t) = 2e ' cos(t) + e~ ‘sin (t)
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Damped mass—spring oscillator with external force (II)
Oscillator motion

y(t) = y()+yp ()
= 2e "cos(t)+ e Fsin(t) —cos(t) +3sin(t).

Oscillator motion
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§4.6 Variation of parameters (1)
Let y1 (t) and y» (t) be two linearly independent solutions for
ay" +by' +cy=0. (f1)
We look for a particular solution to

ay"+by' +cy="1(t) (£)
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§4.6 Variation of parameters (1)
Let y1 (t) and y» (t) be two linearly independent solutions for
ay" +by' +cy=0. (f1)
We look for a particular solution to

ay"+by' +cy="1(t) (£)

» For any constants c1, ¢, yh(t) =c1, y1(t) + 2 y2 (t) is a
solution to ({1).

» Find particular solution to (¢2) in the form
yp () = vi (1) y1 (t) + v2 (1) y2 (2).

‘Will derive two equations that determine vy (t) and vz (t) ‘
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yp (t) = v (t) y1(t) + va (t) y2 (t) is particular solution to
ayy +by,+cyp,="f(t) (f1)
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yp (t) = v (t) y1(t) + va (t) y2 (t) is particular solution to

ay, + by, +cy,="f(t) (41)
Yp(t) = vi(t) y1(t) +va(t) ya (t) + va(t) y1 (t) + v (t) y2 (1),
Choose vi (t) ya(t) + 5 (t) y2(t) =0 (42)
Yo (1) = vi(t) yi(t) +va(t) ya (t) +va () v (£) + v2 (1) y2 (1)
Equation (¢1) is
F(t) = a(vi(t)yi(t)+va(t) ya(t) +va(t) yi (£) +va(t) y5 (1) +
b (va(t) y1 () + va (t) y5 (1)) + ¢ (v (t) ya (t) + va () y2 (1))
Re-arranging terms, £ (t) = a (v{(t) y1(t) + v (t) y5 (1))
+v1 (t) (a)ﬁ + by + C)/1)
+va (t) (ay2 + by, +cy)
= a2 (vi(t) () +v3(t) ya (). (ls)
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Method of Variation of Parameters
Equations for vy (t), va (t):

() yi(t)+va(t) y2(t) = 0,
AOAO 40w = 1
Set wron (t) %f det ( Q Eg ﬁ Eg ) then
/ Ft)ya(t) f(t) y1(t)
1(8) = awron(t)’ 2 (t) = a wron (t)

V]_(t):—/tf(T)y2(T)dT, V2(t):/tf(7—)y1(7—)d7'

a wron (7)

and y,(t) = vi(t) y1(t) + va(t) y2(t) is solution to
ay"+by +cy="»(t)
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Method of Variation of Parameters: Example (1)
Find one PARTICULAR solution on (—%, 5) for

2
y'+y=tan(t) ()

SOLUTION:

» Two linearly independent solutions for y” +y =0 are
y1 (t) = cos(t), and y» (t) = sin (t).
» Solution to () : yp (t) = vi (t) y1 (t) + v2 (t) y2 (t), with

RN i
n(t) = _/ttan(T) sin(r)dT:_/

= sin(t)+1In <tan <7r—42t)> + a,

v (t) = /tan(T) cos(7) d T = —cos (t) + c.

cos (7)

t1— cos? (1)

T
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Method of Variation of Parameters: Example (1)

Find one PARTICULAR solution on (—%, %) for

y'+y=tan(t) ()

SOLUTION: General solution

y(t) = wvi(t) cos(t)+ va(t) sin(t)

= cos(t) In <tan <7T _42 t>> + ci1cos(t) + csin(t).

Setting ¢; = ¢ = 0 gives particular solution

v (£) = cos (¢) In (tan (” _42 t)) .

43 /44



Method of Variation of Parameters: Example (I1)
Find ALL solutions for variable-coefficient DE

t?y" —4ty' +6y =4t t>0, ({)

SOLUTION:
» Lucky break: yi (t) = t2, y»(t) = t3 solutions for
t?y" —4ty' +6y=0.
» Solution to (¢) : y (t) = vi (t) y1 (t) + va (t) y2 (t), with

2 3
> wron (t) & det( 2tt 3tt2 = t* and
t47_37_3 R
V]_(t) = —/ WdT:_"'t‘i_C]_,
t47_37_2 R
V2(t) = / WdT:lHn(t)—i—Cg

General solution

y(t) = (@) P+wnt)P=4Mt)+at’ +ot.
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