Name (Last, First)

Key, Answer

1. Let A be the following symmetric matrix:

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

It is known that the characteristic polynomial of A is

$$\chi_{\lambda}(A) = \det(A - \lambda I) = (1 + \lambda)^{2} (5 - \lambda).$$

a) (4pts) Find an **orthogonal** basis of \mathbb{R}^3 consisting of eigenvectors of A.

There are two distinct eigenvalues:
$$A=-1$$
 and $A=5$.

 $E_{A=-1}=Nul\left(A-(-1)I\right)=Nul\left[\frac{1}{2}\frac{2}{2}\frac{2}{4}\right]=Nul\left[\frac{1}{0}\frac{2}{000}\right]=Spin \left[\frac{-2}{0}\right]$
 $E_{A=-1}=Nul\left(A-5I\right)=Nul\left[\frac{-5}{1}\frac{2}{2}\right]=Nul\left[\frac{1}{0}\frac{2}{000}\right]=Spin \left[\frac{-2}{0}\right]$
 $E_{A=-1}=Nul\left(A-5I\right)=Nul\left[\frac{-5}{1}\frac{2}{2}\right]=Nul\left[\frac{1}{0}\frac{2}{000}\right]=Spin \left[\frac{-2}{0}\right]$
 $A_{S}=1+5$, $E_{A=-1}=1$ $E_{A=-5}=1$, $A_{S}=1+5$ $E_{A=-1}=1$ $E_{A=-5}=1$ $E_{A=-1}=1$ $E_{A=-1}=1$

b) (3pts) Orthogonally diagonalize A. (In other words, find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Here, you should compute what P^{-1} is.) [Please recall that "orthogonal matrix" does not just mean that it has orthogonal columns but the definition is a bit stronger. This fact will make the computation for P^{-1} very easy.]

(See the reverse side.)

(part b continued)

$$\mathcal{N}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \ \mathcal{N}_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \ \mathcal{N}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}.$$

c) (3pts) Suppose that your answer for part a be $\{v_1,v_2,v_3\}$ where v_1 and v_2 are eigenvectors corresponding to $\lambda=-1$ and v_3 is an eigenvector corresponding to $\lambda=5$. Compute the following sum of matrices (note that the numerators are 3×3 matrices and the denominators are just real numbers):

$$\begin{array}{c} (-1)\frac{v_1v_1^T}{v_1^Tv_1} + (-1)\frac{v_2v_2^T}{v_2^Tv_2} + 5\frac{v_3v_3^T}{v_3^Tv_3}. \\ \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac{1}{100} + \frac{1}{100}$$