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1. Let A be the following symmetric matrix:
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It is known that the characteristic polynomial of A is

xa(A) = det(A — M) = (1 + N)2(5 - \).

a) (4pts) Find an orthogonal basis of R3 consisting of eigenvectors of A.
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b) (3pts) Orthogonally diagonalize A. (In other words, find an orthogonal matrix P and a diagonal matrix D such that
A = PDP™*'. Here, you should compute what P™" is) [Please recall that “orthogonal matrix” does not just mean that
it has orthogonal columns but the definition is a bit stronger. This fact will make the computation for P~ very easy.]
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(See the reverse side.)
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(part b continued)

c) (3pts) Suppose that your answer for part a be {v1,vs,v3} where v; and v, are eigenvectors corresponding
to A = —1 and v3 is an eigenvector corresponding to A = 5. Compute the following sum of matrices (note

that the numerators are 3 x 3 matrices and the denominators are just real numbers):
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