- 1. Mark "T" if the statement is always true, "F" if it is sometimes false. No explanations are needed.
	- 1) T F | If all of the eigenvalues of a matrix are not real but complex, then it must be invertible.
	- 2) T F | If A is an $n \times n$ orthogonal matrix then the RREF of A must have n pivots.
	- 3) T F | If λ is an eigenvalue of A then λ^2 must be an eigenvalue of A^2 .
	- 4) T F | The set of diagonalizable 2×2 matrices is a subspace of the vector space $M_{2\times 2}$.
	- 5) T F | If the 3×3 matrix A has two rows that are the same, then det $A = 0$.
	- 6) T F | Let A be an $n \times n$ matrix. If A^9 is the zero matrix, then the only eigenvalue of A is 0.
	- 7) T F | If A is a square matrix and $A^5 = I$ then A is invertible.
	- 8) T F | If A is a 5×5 matrix such that $\det(2A) = \det A$ then $A = 0$.
	- 9) T F | If T is a one-to-one linear transformation from \mathbb{R}^n to \mathbb{R}^n then T is onto.
	- 10) T F | Let A be an $n \times n$ matrix such that $A^2 = A$, then A is invertible.
	- 11) T F | Every symmetric $n \times n$ matrix with real entries is similar to a diagonal matrix with real entries.
- 2. Select the correct answers. Be aware that there might be more than one answer to each problem.
	- 1) The exponential of a square matrix A is
		- (a) The sum of the series $I + A + A^2 + A^3 + \cdots$
		- (b) The sum of the series $I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$
		- (c) The matrix whose (i, j) -entry is $\exp(A_{ij})$, where A_{ij} is the (i, j) -entry of A
		- (d) The diagonal matrix with entries e^{λ_i} , where the λ_i are the eigenvalues of A

2) The exponential of the matrix $\begin{bmatrix} t & t \\ 0 & t \end{bmatrix}$ $0 -t$ $\Big]$ is (a) $\begin{bmatrix} e^t & e^t \\ 1 & -e^t \end{bmatrix}$ $t \quad e^{-t}$ 1 (b) $\begin{bmatrix} e^t & te^t \\ 0 & -t \end{bmatrix}$ $0 \quad e^{-t}$ 1 (c) $\begin{bmatrix} e^t & (e^t - e^{-t})/2 \\ 0 & -t \end{bmatrix}$ 0 e^{-t} 1 (d) $\begin{bmatrix} e^t & (e^t + e^{-t})/2 \\ 0 & -t \end{bmatrix}$ 0 e^{-t} 1

3) Pick the matrix on the list which is NOT diagonalizable over \mathbb{C} , if any; else, pick option (e).

- (a) $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (d) \lceil $\overline{}$ 1 0 1 0 1 1 0 0 2 1 (e) All of them are diagonalizable over ^C.
- 4) If A and B are matrices such that $AB = 0$, we can safely conclude that (a) Nul A contains Nul B (b) $BA = 0$
	- (c) Nul A contains $Col B$ (d) $Col A$ contains Nul B

 T

5) Which subspace of \mathbb{R}^4 is the orthogonal complement of the subspace defined by the conditions

$$
\{ [x_1, x_2, x_3, x_4]^T : x_1 + x_3 = 0 \text{ and } x_1 - x_2 + x_3 - x_4 = 0 \}
$$
\n(a) $\text{Span}([1, 0, 1, 0]^T, [1, -1, 1, -1]^T)$

\n(b) $\text{Span}([1, 2, -1, -2]^T, [1, 1, 1, 1]^T)$

\n(c) $\text{Span}([1, 2, -1, 2]^T, [1, 1, -1, -1]^T)$

\n(d) $\text{Span}([0, 1, 0, 1]^T, [1, 1, 1, 1]^T)$

- 6) Which linear transformation T has the image not of dimension 2?
	- (a) $T: \mathbb{R}^3 \to \mathbb{R}^4$ sending $[x, y, z]^T$ to $[x, y, 0, 0]^T$
	- (b) $T : \mathbb{P}_2 \to \mathbb{P}_2$ sending $at^2 + bt + c$ to $2at + b 2c$
	- (c) $T: \mathbb{P}_3 \to \mathbb{P}_3$ sending $f(t)$ to $f''(t)$
	- (d) The orthogonal projection map from \mathbb{R}^3 to the plane defined by $x 2y + 3z = 0$
	- (e) All of them have 2-dimensional images.

3. Consider the 2×2 matrix

$$
M_a = \begin{bmatrix} a & 2 - a \\ 2 + a & -a \end{bmatrix}.
$$

- a) Find all real values of a such that M_a is invertible.
- b) Find all real values of a such that M_a is diagonalizable.
- c) Find all eigenvectors of M_1 .

4. Given a linear second-order equation

$$
y''(t) + ay'(t) + by(t) = f(t),
$$

only information you have is a set of three solutions to the equation. They are

 $t + e^t \cos 2t + e^{2t} \sin t$, $t + e^{2t} \sin t$, $t + e^t \sin 2t + e^{2t} \sin t$.

Find a, b , and $f(t)$.

- 5. Solve the following initial value problems:
	- a) $y'' + y' = t^2$ with $y(0) = 0$ and $y'(0) = 0$.
	- b) $y'' + y = \sec t$ with $y(0) = 0$ and $y'(0) = 0$.
	- c) $\mathbf{x}(t)' = A\mathbf{x}(t) + \mathbf{f}(t)$ where $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$ $3 -2$ and $\mathbf{f}(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $4e^t$ with $\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$.

6. Consider the following differential equation in normal form:

$$
\mathbf{x}(t)' = A\mathbf{x}(t) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} t^{-1} e^{3t} \text{ where } A = \begin{bmatrix} -1 & 2 \\ -6 & 6 \end{bmatrix}.
$$

- a) Find a fundamental matrix of the corresponding homogeneous equation.
- b) Compute e^{At} using (a).
- c) Find a particular solution using *eigenvector method*.¹

¹That is, for v_1 and v_2 eigenvectors composing a basis, set $\mathbf{x}_p(t) = \xi_1(t)v_1 + \xi_2(t)v_2$ and solve for $\xi_1(t)$ and $\xi_2(t)$.

7. (Extra) Let A be a 2×2 matrix such that²

$$
A\begin{bmatrix} -1 \\ 4 \end{bmatrix} = -4 \begin{bmatrix} -1 \\ 4 \end{bmatrix}, A\begin{bmatrix} 0 \\ 1 \end{bmatrix} = -4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 4 \end{bmatrix}.
$$

Find the functions $x(t)$ and $y(t)$ with initial values $x(0) = -2$, $y(0) = 11$ that satisfy the system of differential equations

$$
\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}' = A \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}.
$$

²Hint. This tells you that $A = PDP^{-1}$ where $P = \begin{bmatrix} -1 & 0 \\ 4 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -4 & 1 \\ 0 & -4 \end{bmatrix}$ $0 -4$.