- 1. Mark "T" if the statement is always true, "F" if it is sometimes false. No explanations are needed.
 - (T) F | If the span of v_1, \dots, v_n contains w_1, w_2, w_3 , it contains the span of these three vectors.
- (T) F | If B is an $n \times 5$ matrix, the set of matrices $A \in M_{m \times n}$ such that AB = 0 is a subspace of $M_{m \times n}$.
 - T F A and B are $n \times n$ square matrices then $(A+B)^2 = A^2 + 2AB + B^2$.
- T F There exists a set of three nonzero orthogonal vectors in \mathbb{R}^2 .
- T F There exists a real 3×3 matrix A such that dim $ColA = \dim NulA$.
- T F There exists a real 3×3 orthogonal matrix U such that $\det U = 2$.
- (T) F | If A and B are $n \times n$ matrices, and AB is invertible, then A and B are invertible.
- \bigcirc F | If a matrix A has linearly dependent columns then $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
- T $\widehat{\mathbf{F}}$ A least-squares solution $\widehat{\mathbf{x}}$ of a linear system $A\mathbf{x} = \mathbf{b}$, with A of size $m \times n$, is always characterized by the following: $\widehat{\mathbf{x}}$ is in ColA and $||A\widehat{\mathbf{x}} \mathbf{b}||$ is as short as **pos** sible.
- T F) The characteristic polynomial of a 2×2 matrix A is $\lambda^2 + \lambda \operatorname{Tr} A + \det A$.
- T F If $T: \mathbb{R}^n \to \mathbb{R}^m$ is an one-to-one linear transformation, then n < m.
- T F Let v, w, z be vectors in \mathbb{R}^n . If $v \cdot w$ and $v \cdot z$, then $w \cdot z = 0$.
- T F | If $v \cdot z = w \cdot z$ for all $z \in \mathbb{R}^n$, then v = w.

- 2. Let A be a 3×3 matrix with eigenvalues 0, 1, 2 and corresponding eigenvectors v_0 , v_1 , and v_2 .
 - a. Find bases for ColA and NulA.
 - b. Find two different vectors **x** such that A**x** = $2v_1 + v_2$.
- 2. Vo, V, Vz are linearly independent vectors blc they correspond to distinct eigenvalues.

 3 lin. independent vectors make a basis that spans R3

 4 any VER3 is a linear combo of vo, V, Vz V= CoVot C, V, t Cz Vz.

 COIA = {AV} = {A (CoVotC, V, t Cz Vz)} = {CoAvotC, AV, t Cz Avz} = 10 + c, v, +2 c, v, }

= Span IV. V. }

NUIA = {VER3, AV=0} = { Covo + C, V, + C2 V2} => C1, C2 must equal 0 b. Aν=(Covo+C,v,+C,v)= C,V,+2C,v2=2V,+V2 C1=2, C2=1/2, while co can equal anything マニュマルトグマッ

$$\overrightarrow{X}_{1} = \overrightarrow{\nabla}_{0} + 2\overrightarrow{\nabla}_{1} + \cancel{\lambda} \overrightarrow{\nabla}_{2}$$

3. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2. Let $\mathcal{B} = \{1, x, x_t^2\}$ be a basis for \mathbb{P}_2 and $T: \mathbb{P}_2 \to \mathbb{P}_2$ denote the mapping sending f to f' + f. Find the matrix A for T with respect to the basis \mathcal{B} and find the eigenvectors and eigenvalues of A.

$$A = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

- 4. Let $v = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$ and $w = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$. For $\mathbf{x} \in \mathbb{R}^4$, let $T(\mathbf{x}) = (\mathbf{x} \cdot v)v + (\mathbf{x} \cdot w)w$.
 - a. Show that T is a linear transformation from \mathbb{R}^4 to \mathbb{R}^4 .
 - b. Find two eigenvectors of T and one non-zero vector x such that T(x) = 0.

$$T(\vec{x}) + T(\vec{y}) = (\vec{x} \cdot \vec{v}) \vec{v} + (\vec{y} \cdot \vec{w}) \vec{w} + (\vec{x} \cdot \vec{w}) \vec{w}$$

$$= \frac{1}{(\vec{x} + \vec{y}) \cdot \vec{v}} \vec{v} + (\vec{x} + \vec{y}) \cdot \vec{w} \vec{w} = T(\vec{x} + \vec{y})$$

$$T(c\vec{x}) = (c\vec{x} \cdot \vec{v}) \vec{v} + (c\vec{x} \cdot \vec{w}) \vec{w}$$

$$= c(\vec{x} \cdot \vec{v}) \vec{v} + c(\vec{x} \cdot \vec{w}) \vec{w} + c((\vec{x} \cdot \vec{v}) \vec{v} + (\vec{x} \cdot \vec{w}) \vec{w}) = cT(\vec{x})$$

(A-XI= 2-X

to find nonzero uctor X.V+ X.W=0

Llavtbw) Lave Lbw = 4av+4bw , 2=4 Not[1-1-1] => [000] , same as fincting

any vector in

5. Find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1, (1+t)^2, (1-t)^2, t^3\}$ of \mathbb{P}_3 to the **Sta**ndard basis $C = \{1, t, t^2, t^3\}.$

$$M[X]_{B} = [X]_{C}$$

$$M = [b_{1}]_{c}[b_{2}]_{c}[b_{3}]_{c}[b_{4}]_{c}]$$

$$b_{1} = 1 \cdot 1 + 0 \cdot t + 0 \cdot t^{2} + 0 \cdot t^{3}$$

$$b_{2} = 1 \cdot 1 + 2 \cdot t + 1 \cdot t^{2} + 0 \cdot t^{3}$$

$$b_{3} = 1 \cdot 1 + 2 \cdot t + 1 \cdot t^{2} + 0 \cdot t^{3}$$

$$b_{4} = 0 \cdot 1 + 0 \cdot t + 0 \cdot t^{2} + 1 \cdot t^{3}$$

$$b_{4} = 0 \cdot 1 + 0 \cdot t + 0 \cdot t^{2} + 1 \cdot t^{3}$$

$$M = \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6. Let $M_{2\times 2}$ be the vector space of 2×2 real matrices. Let

$$H = \{X \in M_{2 \times 2} : X \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}.$$

- a. Prove that H is a subspace.
- b. Find a basis for H and compute dim H.

w/ a dimension of 4.

Now, to Find what H looks like. let x= [ab] =H.

Then,
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $a-b=0$ $a=b$ $c-d=0$, $c=d \rightarrow restricts$ the basis to $\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$