- 1. Mark "T" if the statement is always true, "F" if it is sometimes false. No explanations are needed.
 - T F | If the span of v_1, \dots, v_n contains w_1, w_2, w_3 , it contains the span of these three vectors.
 - T F | If B is an $n \times 5$ matrix, the set of matrices $A \in M_{m \times n}$ such that AB = 0 is a subspace of $M_{m \times n}$.
 - T F | If A and B are $n \times n$ square matrices then $(A+B)^2 = A^2 + 2AB + B^2$.
 - T F | There exists a set of three nonzero orthogonal vectors in \mathbb{R}^2 .
 - T F | There exists a real 3×3 matrix A such that dim ColA = dim NulA.
 - T F | There exists a real 3×3 orthogonal matrix U such that det U = 2.
 - T F | If A and B are $n \times n$ matrices, and AB is invertible, then A and B are invertible.
 - T F | If a matrix A has linearly dependent columns then $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - T F | A least-squares solution $\hat{\mathbf{x}}$ of a linear system $A\mathbf{x} = \mathbf{b}$, with A of size $m \times n$, is always characterized by the following: $\hat{\mathbf{x}}$ is in ColA and $||A\hat{\mathbf{x}} \mathbf{b}||$ is as short as possible.
 - T F | The characteristic polynomial of a 2×2 matrix A is $\lambda^2 + \lambda \operatorname{Tr} A + \det A$.
 - T F | If $T : \mathbb{R}^n \to \mathbb{R}^m$ is an one-to-one linear transformation, then n < m.
 - T F | Let v, w, z be vectors in \mathbb{R}^n . If $v \cdot w$ and $v \cdot z$, then $w \cdot z = 0$.
 - T F | If $v \cdot z = w \cdot z$ for all $z \in \mathbb{R}^n$, then v = w.

- 2. Let A be a 3×3 matrix with eigenvalues 0, 1, 2 and corresponding eigenvectors v_0 , v_1 , and v_2 .
 - a. Find bases for ColA and NulA.
 - b. Find two different vectors \mathbf{x} such that $A\mathbf{x} = 2v_1 + v_2$.

3. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2. Let $\mathcal{B} = \{1, x, x^2\}$ be a basis for \mathbb{P}_2 and $T : \mathbb{P}_2 \to \mathbb{P}_2$ denote the mapping sending f to f' + f. Find the matrix A for T with respect to the basis \mathcal{B} and find the eigenvectors and eigenvalues of A.

- 4. Let $v = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$ and $w = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$. For $\mathbf{x} \in \mathbb{R}^4$, let $T(\mathbf{x}) = (\mathbf{x} \cdot v)v + (\mathbf{x} \cdot w)w$.
 - a. Show that T is a linear transformation from \mathbb{R}^4 to \mathbb{R}^4 .
 - b. Find two eigenvectors of T and one non-zero vector \mathbf{x} such that $T(\mathbf{x}) = 0$.

5. Find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1, (1+t)^2, (1-t)^2, t^3\}$ of \mathbb{P}_3 to the standard basis $\mathcal{C} = \{1, t, t^2, t^3\}$.

6. Let $M_{2\times 2}$ be the vector space of 2×2 real matrices. Let

$$H = \{ X \in M_{2 \times 2} : X \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}.$$

- a. Prove that H is a subspace.
- b. Find a basis for H and compute dim H.