Linear Algebra
Differential Equations Math 54 Lecture 002 Practice Final Exam [DE] Dec 6, 2019

1. Mark “T” if the statement is always true, “F” if it is sometimes false. No explanations are needed.
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If W and W' are subspaces of a vector space V, the set of vectors in V' that belong to both W
and W' is a subspace of V.

If A is similar to B and B is orthogonal then A must be orthogonal.
For every subspace H of R"™, there is a matrix A such that H = NulA.

If X\ is an eigenvalue of A and p is an eigenvalue of B and both are n x n, then Ay must be an
eigenvalue of AB.

The normal equation AT Ax = A”b always have a unique solution.

The change-of-coordinates matrix CPB between the bases B = {2e1,3e2} and C = {—3e;,4ea} of
+—

R? is a diagonal matrix.

There exists a real 3 x 3 matrix of rank 2 with only one distinct eigenvalue.

The set of vectors [x1 To 333]T so that 21 + 2 + 3 > 0 forms a subspace of R3.

If V is a vector space, and Hy and Hy are subspaces, then the union of H; and Hs (i.e. the set of
vectors that lie in Hy or Hs) is always a subspace.

The dimensions of the column space and of the nullspace of a matrix add up to the number of
TOWS.

Suppose that A is a symmetric n X n matrix and W is a subspace of R™ such that Aw € W for
all w € W. Then, Av € W+ for all v € W+ where W+ is the orthogonal complement of W with
respect to the dot product.

Suppose that vy (t), v2(t) are vector functions taking values in R2. If the Wronskian W vy, v2](t)
is equal to O for all ¢t € R, then v (t), va(t) are linearly dependent.

The set of solutions to ay” + by’ + cy = 0 is a two-dimensional vector space for any a, b, ¢ € R.
The eigenvalues of an orthogonal matrix are all real.
For any matrix A, the matrix AAT is diagonalizable.

The function y(t) = tsint is a solution to "’ + 2y"” +y = 0.
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2. Select the correct answers. Be aware that there might be more than one answer to each problem.

1) A number X is an eigenvalue of an n x n matrix A if and only if:

(a) det(A — AI,) = 0. (b) A is a pivot of A.
(c) A — A, is invertible. (d) Ax = Ax for some x € R™.
2) A collection of n vectors vy, -+ -, v, in R™ is linearly independent if and only if:
(a) Tt forms a basis of R™. (b) Any two vectors in it are linearly independent.
(¢) vi + -+ + v, = 0 implies that each v; = 0. (d) c1vi+---+c, vy, = 0 implies that each ¢; = 0.

3) The rank of a matrix A is
(a) The number of rows. (b) The dimension of its column space.

(c) The dimension of its row space. (d) dim(Row A)+.

3. Find the general solution to the equation

Y+ 3y +2y:et+1.
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4. Find the general solution to the following system:

x'(t) = E :ﬂ x(t) + m te 3.
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5. The system x'(t) = {0 9

] x(t) has a solution x;(t) = e? [(1)} Find another solution which is linearly

independent to x;(¢). (Hint. Try xo(t) = te? [(1)] + e?tv.)
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6. Find the values of the positive number A for which the given problem below has a nontrivial solution.

y'+dy=0for0<z<m y(0)=0, 9(r)=0.
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7. Suppose that f(z) =0 for —7 < z < 0 and f(z) =1 for 0 < z < 7. Find the Fourier series for f(z) on
[, 7).t
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