- 1. Mark "T" if the statement is always true, "F" if it is sometimes false. No explanations are needed.
 - T F | If W and W' are subspaces of a vector space V, the set of vectors in V that belong to both W and W' is a subspace of V.
 - T F | If A is similar to B and B is orthogonal then A must be orthogonal.
 - T F | For every subspace H of \mathbb{R}^n , there is a matrix A such that H = NulA.
 - T F | If λ is an eigenvalue of A and μ is an eigenvalue of B and both are $n \times n$, then $\lambda \mu$ must be an eigenvalue of AB.
 - T F | The normal equation $A^T A \mathbf{x} = A^T \mathbf{b}$ always have a unique solution.
 - T F | The change-of-coordinates matrix $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ between the bases $\mathcal{B} = \{2e_1, 3e_2\}$ and $\mathcal{C} = \{-3e_1, 4e_2\}$ of \mathbb{R}^2 is a diagonal matrix.
 - T F | There exists a real 3×3 matrix of rank 2 with only one distinct eigenvalue.
 - T F | The set of vectors $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ so that $x_1 + x_2 + x_3 \ge 0$ forms a subspace of \mathbb{R}^3 .
 - T F | If V is a vector space, and H_1 and H_2 are subspaces, then the union of H_1 and H_2 (i.e. the set of vectors that lie in H_1 or H_2) is always a subspace.
 - T F | The dimensions of the column space and of the nullspace of a matrix add up to the number of rows.
 - T F | Suppose that A is a symmetric $n \times n$ matrix and W is a subspace of \mathbb{R}^n such that $Aw \in W$ for all $w \in W$. Then, $Av \in W^{\perp}$ for all $v \in W^{\perp}$ where W^{\perp} is the orthogonal complement of W with respect to the dot product.
 - T F | Suppose that $v_1(t), \dots, v_n(t)$ are vector functions taking values in \mathbb{R}^n . If the Wronskian $W[v_1, \dots, v_n](t)$ is equal to 0 for all $t \in \mathbb{R}$, then $v_1(t), \dots, v_n(t)$ are linearly dependent.
 - T F | The set of solutions to ay'' + by' + cy = 0 is a two-dimensional vector space for any $a, b, c \in \mathbb{R}$.
 - T F | The eigenvalues of an orthogonal matrix are all real.
 - T F | For any matrix A, the matrix AA^T is diagonalizable.
 - T F | The function $y(t) = t \sin t$ is a solution to y''' + 2y'' + y = 0.

- 2. Select the correct answers. Be aware that there might be more than one answer to each problem.
 - A number λ is an eigenvalue of an n × n matrix A if and only if:
 (a) det(A − λI_n) = 0.
 (b) λ is a pivot of A.
 (c) A − λI_n is invertible.
 (d) A**x** = λ**x** for some **x** ∈ ℝⁿ.
 - 2) A collection of n vectors v₁, ..., v_n in Rⁿ is linearly independent if and only if:
 (a) It forms a basis of Rⁿ.
 (b) Any two vectors in it are linearly independent.
 - (c) $\mathbf{v}_1 + \cdots + \mathbf{v}_n = \mathbf{0}$ implies that each $\mathbf{v}_i = \mathbf{0}$. (d) $c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n = \mathbf{0}$ implies that each $c_i = 0$.
 - 3) The rank of a matrix A is
 (a) The number of rows.
 (b) The dimension of its column space.
 (c) The dimension of its row space.
 (d) dim(Row A)[⊥].
- 3. Find the general solution to the equation

$$y'' + 3y' + 2y = \frac{1}{e^t + 1}.$$

4. Find the general solution to the following system:

$$\mathbf{x}'(t) = \begin{bmatrix} 1 & -6\\ 1 & -4 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2\\ 1 \end{bmatrix} t e^{-3t}.$$

5. The system $\mathbf{x}'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \mathbf{x}(t)$ has a solution $\mathbf{x}_1(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Find another solution which is linearly independent to $\mathbf{x}_1(t)$. (Hint. Try $\mathbf{x}_2(t) = te^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + e^{2t}v$.)

6. Find the values of the positive number λ for which the given problem below has a nontrivial solution.

 $y'' + \lambda y = 0$ for $0 < x < \pi$; y(0) = 0, $y'(\pi) = 0$.

7. Suppose that f(x) = 0 for $-\pi < x < 0$ and f(x) = 1 for $0 \le x \le \pi$. Find the Fourier series for f(x) on $[-\pi,\pi]^{1}$.

 $^{^{1} {\}rm Optional.}$