- 1. Mark "T" if the statement is always true, "F" if it is sometimes false. No explanations are needed.
	- T F | If W and W' are subspaces of a vector space V, the set of vectors in V that belong to both W and W' is a subspace of V .
	- T F | If A is similar to B and B is orthogonal then A must be orthogonal.
	- T F | For every subspace H of \mathbb{R}^n , there is a matrix A such that $H = \text{Nul}A$.
	- T F | If λ is an eigenvalue of A and μ is an eigenvalue of B and both are $n \times n$, then $\lambda \mu$ must be an eigenvalue of AB.
	- T F | The normal equation $A^T A x = A^T b$ always have a unique solution.
	- T F | The change-of-coordinates matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ between the bases $\mathcal{B} = \{2e_1, 3e_2\}$ and $\mathcal{C} = \{-3e_1, 4e_2\}$ of \mathbb{R}^2 is a diagonal matrix.
	- T F | There exists a real 3×3 matrix of rank 2 with only one distinct eigenvalue.
	- T F | The set of vectors $[x_1 \ x_2 \ x_3]^T$ so that $x_1 + x_2 + x_3 \ge 0$ forms a subspace of \mathbb{R}^3 .
	- T F | If V is a vector space, and H_1 and H_2 are subspaces, then the union of H_1 and H_2 (i.e. the set of vectors that lie in H_1 or H_2) is always a subspace.
	- T F | The dimensions of the column space and of the nullspace of a matrix add up to the number of rows.
	- T F | Suppose that A is a symmetric $n \times n$ matrix and W is a subspace of \mathbb{R}^n such that $Aw \in W$ for all $w \in W$. Then, $Av \in W^{\perp}$ for all $v \in W^{\perp}$ where W^{\perp} is the orthogonal complement of W with respect to the dot product.
	- T F | Suppose that $v_1(t), \dots, v_n(t)$ are vector functions taking values in \mathbb{R}^n . If the Wronskian $W[v_1, \dots, v_n](t)$ is equal to 0 for all $t \in \mathbb{R}$, then $v_1(t), \dots, v_n(t)$ are linearly dependent.
	- T F | The set of solutions to $ay'' + by' + cy = 0$ is a two-dimensional vector space for any $a, b, c \in \mathbb{R}$.
	- T F | The eigenvalues of an orthogonal matrix are all real.
	- T F | For any matrix A, the matrix AA^T is diagonalizable.
	- T F | The function $y(t) = t \sin t$ is a solution to $y'''' + 2y'' + y = 0$.
- 2. Select the correct answers. Be aware that there might be more than one answer to each problem.
	- 1) A number λ is an eigenvalue of an $n \times n$ matrix A if and only if: (a) det $(A - \lambda I_n) = 0$. (b) λ is a pivot of A. (c) $A - \lambda I_n$ is invertible. (d) $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$.
	- 2) A collection of n vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^n is linearly independent if and only if: (a) It forms a basis of \mathbb{R}^n . (b) Any two vectors in it are linearly independent.
		- (c) $\mathbf{v}_1 + \cdots + \mathbf{v}_n = \mathbf{0}$ implies that each $\mathbf{v}_i = \mathbf{0}$. (d) $c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n = \mathbf{0}$ implies that each $c_i = 0$.
	- 3) The rank of a matrix A is (a) The number of rows. (b) The dimension of its column space. (c) The dimension of its row space. (d) dim(Row $A)^{\perp}$.
- 3. Find the general solution to the equation

$$
y'' + 3y' + 2y = \frac{1}{e^t + 1}.
$$

4. Find the general solution to the following system:

$$
\mathbf{x}'(t) = \begin{bmatrix} 1 & -6 \\ 1 & -4 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} t e^{-3t}.
$$

5. The system $\mathbf{x}'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \mathbf{x}(t)$ has a solution $\mathbf{x}_1(t) = e^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\overline{0}$. Find another solution which is linearly independent to $\mathbf{x}_1(t)$. (Hint. Try $\mathbf{x}_2(t) = te^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $+ e^{2t}v.$

6. Find the values of the positive number λ for which the given problem below has a nontrivial solution.

 $y'' + \lambda y = 0$ for $0 < x < \pi$; $y(0) = 0$, $y'(\pi) = 0$.

7. Suppose that $f(x) = 0$ for $-\pi < x < 0$ and $f(x) = 1$ for $0 \le x \le \pi$. Find the Fourier series for $f(x)$ on $[-\pi, \pi]$ ¹

 1 Optional.