1 Singular Value Decomposition (SVD)

Diagonalization (PDP^{-1}) or orthogonal diagonalization (PDP^T) are useful when you want to understand what kind of properties your matrix A has. However, not all matrices are diagonalizable. Here is a very simple non-example: $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Moreover, we would like to also talk something about non-square matrices. In order to handle these cases, we have a decomposition of A such that it is good enough and you always have this decomposition whatever your matrix A is.

1.1 Singular Values

Recall that a symmetric matrix is always orthogonally diagonalizable and it's good. In fact, there is a natural way to make a symmetric matrix out of any $m \times n$ (note that it does not need to be square) matrix A. That is, $A^T A$. In some sense, $A^T A$ seems to be a good way to think about "A squared" (note that this is not even defined unless m = n) if you recall that $\mathbf{x}^T A^T A \mathbf{x} = ||A\mathbf{x}||^2$. So, we can presume that the square roots of the eigenvalues of $A^T A$ would be good candidates for "eigenvalues" of A. Note that there cannot be any eigen-things for a non-square matrix A and we will use another name, **singular values** of A.

The eigenvalues of $A^T A$ is nonnegative, say $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ are eigenvalues. We take the (positive) square root of each eigenvalue and call it as a singular value, denoted by $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

Now, a miracle happens.

1.2 The Singular Value Decomposition

1.2.1 Theorem 9

As $A^T A$ is an $n \times n$ symmetric matrix, according to the Spectral Theorem, we have an orthonormal basis consisting of eigenvectors. Let v_1, \dots, v_n be the vectors such that the corresponding eigenvalues satisfy $\lambda_1 \geq \dots \geq \lambda_n \geq 0$. If there are r nonzero numbers, then $\{Av_1, \dots, Av_r\}$ is an ortho**gonal** basis for Col A and rkA = r.

1.2.2 Theorem 10

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix $\Sigma = \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ where D is an $r \times r$ diagonal matrix with nonnegative entries, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that $A = U\Sigma V^T$.

2 Why is Linear Algebra (sometimes) useful?

2.1 Statistics

Some data of N people can be expressed as following:
$$\mathbf{X} = \begin{bmatrix} w_1 & w_2 & \cdots & w_N \\ h_1 & h_2 & \cdots & h_N \\ d_1 & d_2 & \cdots & d_N \\ b_1 & b_2 & \cdots & b_N \end{bmatrix}$$
. The sample mean of \mathbf{X} is $\mathbf{X} \begin{bmatrix} 1/N \\ 1/N \\ \vdots \\ 1/N \end{bmatrix}$

Mean-deviation form of \mathbf{X} , denoted by \mathbf{B} , is the matrix with new column obtained by subtracting the sample mean from each \mathbf{X} 's column. The sample covariance matrix is

$$S = \frac{1}{N-1} \mathbf{B} \mathbf{B}^T.$$

S's diagonal entries are called variances and non-diagonal entries are called covariances. In statistics, one uses the covariance to measure how closely two variables are related. Finally, we define Total variance to be trS.

2.2 Data Analysis

We will take a look at a tiny example among (tons of) applications of SVD in data analysis: Principal Component Analysis (PCA). Suppose you want to transform your data linearly via an orthogonal matrix; $\mathbf{X} = P\mathbf{Y}$ or $\mathbf{Y} = P^T\mathbf{X}$. Then, the covariance matrix for \mathbf{Y} becomes P^TSP . We will make this be diagonal and then do **principal component analysis**.