There will be no formal discussion section. Instead, I will have office hours in the classroom. Time and Place: 8am-9.5am at 75 Evans & 9.5am-11am at 228 Dwinelle

Practice Problems for Midterm 1

1. For a real number c, consider the linear system

$$\begin{array}{rcl} x_1 + x_2 + cx_3 + x_4 & = & c \\ -x_2 + x_3 + 2x_4 & = & 0 \\ x_1 + 2x_2 + x_3 - x_4 & = & -c \end{array}$$

For what c, does the linear system have a solution?

Answer: $c \neq 2$.

- 2. A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ sends $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ to $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} 3\\4\\5 \end{bmatrix}$.
 - a. Find $T\left(\begin{bmatrix}5\\6\end{bmatrix}\right)$. b. Find a vector $\mathbf{v} \in \mathbb{R}^2$ with $T(\mathbf{v}) = \begin{bmatrix}7\\8\\7\end{bmatrix}$, or else explain why no such vector exists.

Answer: a. $\begin{bmatrix} 5\\6\\7 \end{bmatrix}$, b. No such **v** exists.

3. Determine the inverse of the following matrix by two different methods:

[one method is to use Cramer's Rule, but you don't necessarily need to know this for Midterm 1]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 2 & 2 & 1 \end{bmatrix}$$

Answer: $\begin{bmatrix} 3 & -4 & 7 \\ -4 & 5 & -8 \\ 2 & -2 & 3 \end{bmatrix}.$

4. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^3$ has the standard matrix with 2 pivots and we know

$$T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\-1\end{bmatrix} \qquad T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Which of the following are a possible standard matrix of T?

a)
$$\begin{bmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 1 & -2 \\ 2 & 2 & -4 \\ 1 & -1 & -2 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 & -2 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 1 & -2 \\ 0 & 2 & -2 \\ 2 & -1 & -1 \end{bmatrix}$

Answer: c and d.

5. Consider the matrices

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & -1 \\ 0 & -1 & 2 & -1 \end{bmatrix}$$

a. Calculate the matrix AB.

b. Calculate det(AB). [You are welcome to skip this problem. For others, here is some clue: dimNul $B \ge 1$.]

Answer: a.
$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 4 & 1 & 2 & -1 \\ 2 & 1 & 0 & -1 \\ 1 & -1 & 3 & -3 \end{bmatrix}$$
, b. 0.

1 1 7

Γ1

6. Let a map $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined as

$$T(x,y,z) = (x-y+z,x) \text{ or equivalently } T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x-y+z \\ x \end{bmatrix}$$

Show that T is a **onto** linear transformation. Does T map \mathbb{R}^3 **one-to-one** \mathbb{R}^2 ?

Answer: It is not one-to-one.

7. Suppose $A = \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix}$ is the standard matrix for a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ and $B = \begin{bmatrix} 0 & i \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$ is the

standard matrix for a linear transformation $S: \mathbb{R}^2 \to \mathbb{R}^4$.

- a. Check if A is an invertible matrix. (If it is, find the inverse. If not, prove why it is not invertible.)
- b. Find the standard matrix for $S \circ T \circ T^{-1} \circ T$.

Answer: a. It is., b. Transpose¹ of
$$\begin{bmatrix} -5 & 0 & -2 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix}$$
.

8. Compute the determinant of the following matrix. [You can do it!]

[1	1	1	1	1
2	4	6	8	10
0	0	0	$^{-1}$	1
3	3	7	1	2
5	-1	3	9	2
L .				_

Answer: 404.

- 9. Which of the following transformations is a linear transformation?
 - a. Rotation by π about the origin followed by reflection across the line passing through (1,1) and (1,2)
 - b. Reflection across the line passing through (1,1) and (-1,-1)
 - c. Rotation by $\pi/2$ about (1,1) followed by reflection across the line y = x followed by rotation by $\pi/2$ about (1,1)

Answer: b and c.

- 10. Mark each statement True or False. Justify your answer precisely.
 - a. For a matrix A, there exists a unique echelon form of A.
 - b. Suppose that six vectors v_1, v_2, \dots, v_6 satisfy :

 $\{v_1, v_2, v_3, v_4\}, \{v_3, v_4, v_5, v_6\}, \text{ and } \{v_5, v_6, v_1, v_2\}$ are linearly independent sets of vectors.

Then, $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ is a linearly independent set.

- c. If A is a 2×2 matrix such that $A^2 = 0$, then A = 0.
- d. If A is a 5×5 matrix such that det(2A) = 2 det(A), then A = 0.
- e. If one row in some echelon form of the augmented matrix of a system is $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$, then the system is inconsistent.
- f. The map $T:\mathbb{R}^2\to\mathbb{R}^2$ which reflects points about the line y=1 is linear.
- g. The solution set of a consistent linear system $A\mathbf{x} = \mathbf{b}$ consists of the vectors $\mathbf{p} + \mathbf{h}$, where \mathbf{p} is one particular solution of the system and \mathbf{h} ranges over the solutions of the homogeneous system $A\mathbf{x} = \mathbf{0}$.
- h. The columns of any 4×5 matrix are linearly dependent.
- i. The columns of any 4×3 matrix are linearly independent.
- j. Every line in \mathbb{R}^3 is a linear subspace.
- k. If the two $n \times n$ matrices A, B are invertible, then so is AB and $(AB)^{-1} = A^{-1}B^{-1}$.
- 1. If A is a 4×4 matrix and the system $A\mathbf{x} = \mathbf{e}_j$ is consistent for each j = 1, 2, 3, 4, then A is invertible.

Answer: Only g, h, and l are True.

¹The only reason I've written the answer in this strange way is to make solutions fit into this page.