Linear Algebra
Differential Equations Math 54 Lecture 001 Review Session (D. Lim) December 6, 2018

1. Which of the following conditions makes the system Ax = b, with A an 4 x 5 matrix, have at least one solution?

a) Always b) Never ¢) When A has four pivots
d) When A has a left nullspace e) When b is in NulA f) When b is in ColA
2. Which of the following is the smallest possible dimension of the null space of a 8 x 5 matrix A?
a) 0 b) 1 c) 2 d) 3 e)4
3. What is the largest possible dimension of the null space of 5 x 8 matrix A7
a)9 b) 8 c) 7 d) 6 5) 4
4. Which of the following matrices are similar to
1 1 0
0 1 0|7
0 0 2
1 2 3 1 -1 2 1 20 1 0 3 2 00
a) |0 3 1 by [0 -1 0 c)|0 1 0 d [0 1 -1 e) |0 1 0
0 0 2 -1 1 1 0 0 2 00 2 0 0 1

5. Which of the following conditions is necessary for Ax = x (A is an 3 x 3 matrix) to have at least one solution?

a) Always b) When det A =0 c) When det(A—1)=0
d) When x is in Nul4 e) When x is in Col(A4 — 1) f) When det A=1
6. Which of the following sets are orthogonal?
o] T17] [1
0 0 1 (5] [—2 0 2 !
a) , ) b) , c)< |0],-2], |1
ol [o] | PRE N PSNE
10 -1 [1
(1] [-3] [ 1] (1 1 2 2 6
0 2 -1 1 0 -3 1 -1
Dyl 1] Y11 o |=1| 5] -1
o] [4] [1] 1] -t L2 (2] |6

7. A number X is not an eigenvalue of an n x n matrix A if and only if:

a) Nul(A — A\I,,) = {0} b) det(A —AI,) =0 ¢) Ax = Ax for more than two x’se€ R"
d) A — A, is not invertible e) (A — Al,)x = b is not consistent for some b € R™.
L . 3 3
8. The following is an eigenvalue of A = 4 7l
a) 3 b) 5 c) 7 d)9 e) 2
. . D —4 6
9. Which of the following matrices is similar to [3 5] ?
-4 1 2 6 5 1 1 6
a) [ 0 5] b) {O _1] c) {O _4} d) [0 _2] e) None of them
. 9 . 21 . |4 41 . |6
10. For some basis of R“, the coordinate vector of the vector 3| 18 |3 and that of the vector 50 gl Then, the

coordinate vector of {g] is
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Which of the following vectors belongs to a basis B of R? when the B-coordinate of E} is [ﬂ and that of [ﬂ is B](?
1 1 1 1 1

dt i d g dt

Under which circumstances is the square matrix A guaranteed to have non-zero determinant?

a) A has positive entries everywhere b) A has orthonormal columns ¢) A has eigenvalue 1

d) The system Ax = b has a unique solution for a b € R"™ e) None of them

Which of the following upper-triangular matrices with only one eigenvalue has an one-dimensional eigenspace?

[0 0 0 2 0 0 1 0 1 -1 1 0 1 2 3
a) [0 0 0 b) [0 2 7 oo 1 1 aHlo -1 0 e)lo 1 2

0 0 0 0 0 2 10 0 1 | 0 0 -1 10 0 1
Which of the following matrices is not diagonalizable over R?

1 0 [0 1] (0 —1] 1 0 1 1]
2) 0 1} b) 1 0 °) 1 0 d) 0 1] °) 1 1]
Which of the following matrices is not diagonalizable over C?

1 1 0 1] (2 —1] 1 2 1 2]
2) 0 1} b) 1 0 ) 1 3 d) 6 —1] ) 2 1]
Which of the following matrices is diagonalizable over C but not over R?

1 -2 [0 1] (0 —1] 2 1 1 1]
2) 2 5] b) 1 0 ) 1 0 d) 0 2} ¢) 1 1]
Which of the following matrices is diagonalizable over R but not over C?

1 3 2 1 (0 —1] 1 0
a) 3 J b) I c) 1o d) 0 _1] e) None of them

Which of the following linear transformations R? — R?, x + Ax are given by an orthogonal matrix A?*

a) Reflection across the line z =y
b) Rotation by 7/4 about the origin
c¢) A shear transformation fixing the line y =0
d) Reflection across the line = y followed by reflection across the line z =0
e) Scaling by 2 followed by rotation by 7/4 about the origin followed by scaling by 1/2

Which of the following tranformations is a linear transformation?*

a) Rotation by 7 about the origin followed by reflection across the line passing through (1,1) and (1,2)

b) Rotation by 7/3 about (1,1)

c¢) Reflection across the line passing through (1,1) and (—1,—1)

d) Rotation by /2 about (1,1) followed by reflection across the line y = x followed by rotation by —m/2 about (1,1)
e) Reflection across the line z = 1 followed by reflection across the line x = —1

Which of the following maps P — R, using the following notation: p(x) = as2? + a1z + ag, is not a linear transfor-
mation?

a (0 0 1 9) —p(0
ar@e |2 v O as@e [EY ] g s B ape - PO TR0

ai ao

Which of the following maps P,, — R is an one-to-one linear transformation?

NN

2 (2 !

a) p(z) — p: b) p(z) — P : c) p(x) fo d) p(z) — P : ) None of them
p(n) P (n) N p(t)dt p™m(1)
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22. Which of the following maps P,, — P, is an onto linear transformation?
2z
a) p(x) — p'(x) b) p(z) — p(2z) c) p(z) = fo P/(t)dt d) p(z) = p'(z) + p(z) — p(0)
23. Which of the following maps P,,_; — R"™ is an isomorphism?
1
p(1) p'(1) f02 p(t)dt p(1)
p(2) p'(2) [7 p(t)dt p'(1)
a) px) = | b) pla) = | . ¢) pla) = |70 d) pla) = | .
p(n) p'(n) T p(t)dt p™(1)
24. A subspace S of R™ is the orthogonal complement of a d-dimensional subspace T if and only if

25.

26.

27.

28.

29.

30.

31.

a) Some vector in S is orthogonal to every vector in T

b) There are d linearly independent vectors in S orthogonal to every vector in T

c¢) Every vector in R™ can be expressed as the sum of two vectors each of which belongs to S and T
d) dimS=n—-dand SNT = {0}

e) S contains (n — d) vectors orthogonal to every vector in T

) SNT ={0} and SUT =R"

1 -2 -1
For which pair of real numbers (a,b) is the matrix |—-1 a 1 | rank one?
3 —6 b
a) (—1,-3) b) (2,1) c) (2,-3) d) (-2,3) e) None of them

What is the sum of the dimensions of the null space and column space of the matrix

1 2 3 4 5
6 7 8 9 10,

A=l 12 13 14 15)
16 17 18 19 20
a) 4 b) 5 c)6 d) 7 e) 8
The rank of a matrix is*
a) # of rows b) # of rows minus the dimension of the null space
¢) # of columns d) # of columns minus the dimension of the column space

e) # of columns minus the dimension of the null space

The following subspace in R* is the orthogonal complement of

T := {[$1,$2,$3,$4]T | .T1+CU2+$3 :0, Tr1 — T — I3 :0}

a) Span{[2,0,0,0]7, [0,1,—-1,0]T} b) Span{[3,1,1,1]%,[1,1,1,0]7}
¢) Span{[1,0,0,0]%, [1,0,1,0]7} ¢) Span{[1,1,1,0]%,[0,1,1,0]T}
e) Span{[1,3,3,0]7, [2,1,2,0]T}
. 1 2] .
A least-squares solution to [J X = [4} is
a)x=1 b) x =2 c)x=3 d)x=4
. 1 4] .
A least-squares solution to [2} X = [3} is
a)x=1 b)x=2 c)x=3 d)x=4
A least-squares solution X of the system Ax = b is always characterized by the following:
a) X is the shortest vector in ColA b) x is the orthogonal projection of b onto ColA
c) b is the orthogonal projection of x onto ColA d) Axis b

e) Ax is the closest vector in ColA to b
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32. Find the Fourier series of cosx on the interval [—, 7]
33. Find the Fourier series of |sinz| on the interval [—7,7]. What can you get for x = 0? or = 7/27 any other x’s?
34. Find the Fourier series of |cosz| on the interval [—, 7]
35. Find the Fourier series of cos? x on the interval [—m, 7]
36. Find the Fourier series of sin? z on the interval [—7, 7]

37.
38.
39.

40.

41.

42.

43.

44.

45.

Find the Fourier series of |sinz cos x| on the interval [—m, 7]
Find the Fourier cosine series of sinz on the interval [0, 7] and explain what you can get at © = /27

Describe the “Variation of Parameters” for solving the second-order inhomogeneous ODE
y'(t) + ar(t)y'(t) + ao(t)y(t) = g(t).
Find a solution to the initial value problem (WebWork #1)

y'(t) +sint-y(t) = g(t), y(0)=7,
that is continuous on the interval [0, 27] where

(t) = sint if0<t<m,
I =\ —sint ifr<t<2r

Find the general solution to the differential equation (WebWork #2)

y cosx = ysinz +sin 175z for x € (fg, g) .

A 1-kg mass is attached to a spring with stiffness 17N/m. The damping constant for the system is 8N-sec/m. At some
point, the mass was located 3m distance to the left of equilibrium and had velocity 17m/sec to right direction. What
is the maximum displacement to the right that it will attain?

Given a linear second-order equation
y"(t) + ay'(t) + by(t) = f (1),

only information you have is a set of three solutions to the equation. They are

t + et cos 2t 4 €% sint, t+ et sin t, t +etsin2t + e?sint.
Find a, b, and f(t).
The differential equation (WebWork #3)

d?y dy
2
SV 7% 16y =0
xd:cZ xdx—i_ 4

has z* as a solution. Find another linearly independent solution.

Match the graphs of solutions shown in the figure below with each of the differential equations below (WebWork #5)
a)x” +4x =0 b) 2’ —4x =0 c)z” —0.7¢' +1.12252 =0 d) «” +0.72' + 1.12252 = 0

\
@ 2 \/ \/

\ A
\/ \/

3 @
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46.

47.

48.

49.

50.

51.

52.

Find the solution to initial value problem (WebWork #11):

d?y dy /
—2 142 4 49y = = =T
a2 o T4 =0, y(0)=8, y(0)=7

Change the differential equation

1
y"'(t) + my//(t) —y(t) =sint

into the form of
x'(t) = A(t)x(t) + £(t)
where x(t), f(t) are 3 x 1 matrices and A(¢) is a 3 x 3 matrix.
Solve the following differential equation by variation of parameters (WebWork #17):

y" + 16y = sec 4.
} be a solution to the system (WebWork #20)

) = 8a(t) — 16ws(t)
(1) = ~8aalt)
If x(0) = [ _32] find x(t).

Find the real-valued solution to the initial value problem y(¢) = [_6 } (WebWork#25):

5

Solve the system via eigenvector decomposition (WebWork #27):

x(t) = [_42 _?’J x(t) + {Si;t] .

Decide if the following statements are always true or sometimes false.

a) Every orthogonal set is a linearly independent set.

b) Two diagonalizable matrices A and B are similar if they have the same eigenvalues, counting multiplicities.

c) If A3 is diagonalizable, then A is diagonalizable as well.

d) If A3 is diagonalizable, then there exists diagonalizable B such that A% = B3,

e) Let A be a n x n matrix. If the sum of entries in a column is zero for each column, then 0 is an eigenvalue of A.
f) Suppose vy, va, - -+, v, are vectors in R™. If {vy,--- v, } is an orthonormal set, then it is a basis for R™.

g) If A and B are n x n invertible matrices, then AB is similar to BA.

h) Given a subspace W of V', the orthogonal projection map from V' to W is a one-to-one linear transformation.

i) The orthogonal complement of the null space of A is the same as the column space of A if A is symmetric.

j) If the orthogonal complement of the null space of A is the same as the column space of A, then A is symmetric.

k) A square matrix A is invertible if and only if 0 is not an eigenvalue of A.
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A mass-spring system

Given a mass-spring system
my” + by’ + ky = Fea

m is the mass, b is the damping coefficient, and & is the stiffness.

Since we derived the equation from the real world, we implicitly assume that m > 0, b > 0, £ > 0. When there is
no friction force or b = 0, the system is called undamped. For 0 < b < v4mk, the system is called underdamped.
Meanwhile, the system is called overdamped when b > v4mk. As the last thing, when b is exactly v4mk, the system is
said to be critcally damped. For the external force term, the system is called free if F.,; = 0.

For the sake of convenience, we define

k

w=1/—
m

so that the equation becomes

b wa/ + w2y = Feat
vVamk m

Undamped and Free The general solution is expressed in the form

yl/ +

A cos(wt + ¢)

and the natural frequency is 5.

us

. . 2
The period is -
Underdamped and Free In this case, the general solution is expressed in the form

Ae® sin(Bt + ¢)

The term Ae®t is called an exponential damping factor and quasiperiod is %’r and quasifrequency is %

Overdamped and Free The general solution has the form as

cre™t + cqem?t

Critically damped and Free The general solution has the form as

(c1 + cot)e™



