Name (Last, First)

1. Mark each statement True or False.			
a.	Let A be an $m \times n$ matrix. The dimension of Col A is the same as the dimension of the column space of A^T .	Т	F
b.	Let \mathbb{R}^3 be the vector space \mathbb{R}^3 A plane in \mathbb{R}^3 is a two-dimensional subspace.	Т	F
C.	Let V be a vector space and S be a subset of V . If S is an infinite set and S spans V , then V is not finite dimensional.	Т	F
d.	Let A be a $n \times n$ matrix. The null space of A is {0 (the zero vector)} if and only if A is invertible.	Т	F
e.	Let V be a vector space of dimension n . A spanning set should have at least n vectors in it.	Т	F
f.	Let V be an n -dimensional vector space. If S spans V , then S is a basis for V .	Т	F
g.	Let \mathbb{P}_4 be the set of polynomials of degree at most 4. Let V be $\{p(x) \in \mathbb{P}_4 \text{ satisfying } p(1) = 0 \text{ and } p(0) = 1\}$. Then, V is a vector space.	Т	F
h.	Let T be a linear transformation. The range of T is a vector space.	Т	F