Name (Last, First)

1. Mark each statement True or False.	
a. Let A be an $m \times n$ matrix. The dimension of Col A is the same as the dimension of the column space of A^T .	ΤF
b. Let \mathbb{P}_4 be the set of polynomials of degree at most 4. Let V be $\{p(x) \in \mathbb{P}_4 \text{ satisfying } p(1) = 0 \text{ and } p(0) = 1\}$. Then, V is a vector space.	ΤF
c. Let A be a 2×3 matrix and B be a 3×2 matrix. If $AB = I_2$, then the columns of A are linearly independent.	ΤF
d. Let T be a linear transformation. The range of T is a vector space.	ΤF
e. Let V be a vector space of dimension n.A spanning set should have at least n vectors in it.	ΤF
f. Let \mathbb{R}^3 be the vector space \mathbb{R}^3 A plane in \mathbb{R}^3 is a two-dimensional subspace.	ΤF
g. Let ${\cal B}$ be a basis for a vector space. In some cases, the coordinate mapping ${f x}\mapsto [{f x}]_{\cal B}$ is not onto.	ΤF
h. Let A be a $n \times n$ matrix. The null space of A is { 0 (the zero vector)} if and only if A is invertible.	ΤF