Quiz 7

1. Find the dimension of the subspace H inside of \mathbb{R}^3 given by all vectors of the form

$$\begin{bmatrix} a+b+c\\b+d\\a+b+d\end{bmatrix}$$

where *a*, *b*, *c*, *d* are any real numbers.

$$\begin{bmatrix} a+b+c\\b+d\\a+b+d \end{bmatrix} = a \begin{bmatrix} 1\\0\\1 \end{bmatrix} + b \begin{bmatrix} 1\\1\\1 \end{bmatrix} + c \begin{bmatrix} 1\\0\\0 \end{bmatrix} + d \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$
Hence, H is the column space of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 & 1\\0 & 1 & 0 & 1\\1 & 1 & 0 & 1 \end{bmatrix}.$$

Here, let's do row reduction for A so that we get

1	1	1	1		[1	1	1	1]	
0	1	0	1	\sim	0	1	0	1	
1	1	0	1		0	0	$ \begin{array}{c} 1 \\ 0 \\ -1 \end{array} $	0	

Hence, we have 3 pivots and, as a result, Col $A = \mathbb{R}^3$. So, H is \mathbb{R}^3 so that H has dimension **3**.

2. If A is a 5×4 matrix, what is the largest possible dimension of the row space of A? What is the largest possible dimension of the null space Nul A?

Note that row vectors live in \mathbb{R}^4 . Hence, the largest possible dimension of the row space of A is 4. Also, the largest possible dimension of the null space is also 4 because Nul A is a subspace of \mathbb{R}^4 .

Examples¹ for each cases can be

[1	0	0	0]			0			
0	1	0	0		0	0	0	0	
0	0	1	0	and	0	0	0	0	
0 0	0	0	1		0	0	0	0	
0	0	0	0		0	0	0	0	

¹To give more correct, detailed, and enough explanation, you should give an example for each case. Even though I did not take this into account for grading this time, please try to give such an example next time.

- October 10, 2014
- 1. Find the dimension of the subspace H inside of \mathbb{R}^3 given by all vectors of the form

$$\begin{bmatrix} a+b+2c\\-a+b\\b+c \end{bmatrix}$$

where *a*, *b*, *c* are any real numbers.

Note that
$$\begin{bmatrix} a+b+2c\\ -a+b\\ b+c \end{bmatrix} = a \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + b \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + c \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$$
. Hence, *H* is the same as the column space of

$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Applying row reduction processes, we get

[1	1	2]		Γ1	1	2		[1	1	2	
$\begin{bmatrix} 1\\ -1 \end{bmatrix}$	1	0	\sim	0	2	2	\sim	0	2	2	
0	1	1		0	1	1		0	0	0	

Hence, there are two pivots so that Col A has dimension **2** with a basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

Therefore, the dimension of H is **2**.

2. If A is a 3×5 matrix, what is the largest possible dimension of the row space of A? What is the largest possible dimension of the null space Nul *A*?

The row space of A is the same as the column space of A^T which has 5×3 size. Since there are only three columns in A^T , there could be at most 3 pivot columns so that the largest possible dimension of the column space of A^T is 3. Hence, the largest possible dimension of the row space of A is 3. Next, for Nul A, because Nul A lives in \mathbb{R}^5 , the largest possible dimension of Nul A is 5.

Examples² for each cases can be

Γ1	0	0	1	0]		[0	0	0	0	0]	
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1	0	0	1	and	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
0	0	1	0	0		0	0	0	0	0	

 $^{^2}$ To give more correct explanation, you should give an example for each case. Even though I did not take this into account for grading this time, please try to give such an example next time.