Quiz 6

Name :

SID :

1. Let a subset W of $M_{2\times 2}$ be given as

$$
W = \{ A \in M_{2 \times 2} | A^2 = \mathbf{0} \}
$$

where $\mathbf{0} = \left(\begin{array}{cc} 0 & 0 \ 0 & 0 \end{array} \right)$. Is W a subspace of $M_{2\times 2}$? Why or why not?

Solution. Note that we have $\left(\begin{array}{cc} 0 & 1\ 0 & 0 \end{array}\right)$, $\left(\begin{array}{cc} 0 & 0\ 1 & 0 \end{array}\right)$ in W . However, their sum $\left(\begin{array}{cc} 0 & 1\ 1 & 0 \end{array}\right)$ becomes I_2 when squared. Hence, W is not a subspace of $M_{2\times 2}$.

2. Let
$$
B = \begin{Bmatrix} b_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$
 be a basis for \mathbb{R}^3 .

a) Let

$$
e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$

We are given that

$$
e_1 = 3b_1 - b_2 + 3b_3
$$

$$
e_2 = b_3
$$

$$
e_3 = 2b_1 - b_2 + 3b_3
$$

Find the inverse matrix $P_{\cal B}^{-1}$ and explain why. (You can use the formula $v=P_{\cal B} \cdot [v]_{\cal B}$.) **Solution.** Put $v = e_1$. Then, we get $P^{-1}_{\mathcal{B}}e_1 = [e_1]_{\mathcal{B}}$. Hence, $P^{-1}_{\mathcal{B}}$'s first column is $[e_1]_{\mathcal{B}}$.

$$
P_{\mathcal{B}}^{-1} = \left(\begin{array}{rrr} 3 & 0 & 2 \\ -1 & 0 & -1 \\ 3 & 1 & 3 \end{array}\right).
$$

b) Let
$$
u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
$$
. Find $[u]_B$.
Solution. $[u]_B = P_B^{-1}u = \begin{pmatrix} 5 \\ -2 \\ 7 \end{pmatrix}$.

1. Let a subset W of $M_{2\times 3}$ be given as

$$
W = \left\{ A \in M_{2 \times 3} | A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.
$$

Is W a subspace of $M_{2\times 3}$? Why or why not?

Solution 1. [Magic of linear transformation] Let's define a linear transformation $T : M_{2\times 3} \rightarrow$ $M_{2\times1}$ as following:

$$
T(A) = A \cdot \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right).
$$

Then, since $AC + BC = (A + B)C$ and $(cA)C = c(AC)$ for any matrices A, B, and C and a scalar c , so T is linear.

W is the kernel of T so that W is a subspace of $M_{2\times 3}$.

Solution 2. Since
$$
\begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix}
$$
, the zero vector $\begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ is in W.
\nIf $A, B \in W$, then $(A + B) \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = A \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + B \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} + \begin{pmatrix} 0 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix}$.
\nYou can also check for $cA \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix}$. So, W is a subspace of $M_{2 \times 3}$.

2. Let
$$
B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 7 \end{pmatrix} \right\}
$$
 be a basis for \mathbb{R}^3 .

a) Explain why P_B is the matrix obtained by attaching basis vectors side by side. (Recall that the definition of P_B is the matrix satisfying

$$
v = P_{\mathcal{B}} \cdot [v]_{\mathcal{B}}
$$

for all $v \in \mathbb{R}^3$.)

Solution. P_B 's first column is $P_Be_1 = P_B[b_1]B = b_1$. So do other columns. So, P_B is the matrix obtained by attaching basis vectors side by side.

b) Find
$$
v \in \mathbb{R}^3
$$
 such that $[v]_B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.
Solution. $v = P_B \cdot [v]_B = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$.