Quiz 6

Name : _____

SID : _____

1. Let a subset W of $M_{2\times 2}$ be given as

$$W = \left\{ A \in M_{2 \times 2} | A^2 = \mathbf{0} \right\}$$

where $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Is *W* a subspace of $M_{2\times 2}$? Why or why not?

Solution. Note that we have $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ in W. However, their sum $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ becomes I_2 when squared. Hence, W is not a subspace of $M_{2\times 2}$.

2. Let
$$\mathcal{B} = \left\{ b_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, b_2 = \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
 be a basis for \mathbb{R}^3 .

a) Let

$$e_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, e_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

We are given that

$$e_1 = 3b_1 - b_2 + 3b_3$$

$$e_2 = b_3$$

$$e_3 = 2b_1 - b_2 + 3b_3$$

Find the inverse matrix $P_{\mathcal{B}}^{-1}$ and explain why. (You can use the formula $v = P_{\mathcal{B}} \cdot [v]_{\mathcal{B}}$.) Solution. Put $v = e_1$. Then, we get $P_{\mathcal{B}}^{-1}e_1 = [e_1]_{\mathcal{B}}$. Hence, $P_{\mathcal{B}}^{-1}$'s first column is $[e_1]_{\mathcal{B}}$.

$$P_{\mathcal{B}}^{-1} = \left(\begin{array}{rrrr} 3 & 0 & 2 \\ -1 & 0 & -1 \\ 3 & 1 & 3 \end{array}\right).$$

b) Let
$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Find $[u]_{\mathcal{B}}$.
Solution. $[u]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}u = \begin{pmatrix} 5 \\ -2 \\ 7 \end{pmatrix}$.

1. Let a subset W of $M_{2\times 3}$ be given as

$$W = \left\{ A \in M_{2 \times 3} | A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

Is W a subspace of $M_{2\times 3}$? Why or why not?

Solution 1. [Magic of linear transformation] Let's define a linear transformation $T: M_{2\times 3} \rightarrow M_{2\times 1}$ as following:

$$T(A) = A \cdot \left(\begin{array}{c} 1\\0\\0\end{array}\right).$$

Then, since AC + BC = (A + B)C and (cA)C = c(AC) for any matrices A, B, and C and a scalar c, so T is linear.

W is the kernel of T so that W is a subspace of $M_{2\times 3}$.

Solution 2. Since
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, the zero vector $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is in W .
If $A, B \in W$, then $(A + B) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + B \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
You can also check for $cA \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. So, W is a subspace of $M_{2 \times 3}$.

2. Let
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\7 \end{pmatrix} \right\}$$
 be a basis for \mathbb{R}^3 .

a) Explain why $P_{\mathcal{B}}$ is the matrix obtained by attaching basis vectors side by side. (Recall that the definition of $P_{\mathcal{B}}$ is the matrix satisfying

$$v = P_{\mathcal{B}} \cdot [v]_{\mathcal{B}}$$

for all $v \in \mathbb{R}^3$.)

Solution. $P_{\mathcal{B}}$'s first column is $P_{\mathcal{B}}e_1 = P_{\mathcal{B}}[b_1]_{\mathcal{B}} = b_1$. So do other columns. So, $P_{\mathcal{B}}$ is the matrix obtained by attaching basis vectors side by side.

b) Find
$$v \in \mathbb{R}^3$$
 such that $[v]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.
Solution. $v = P_{\mathcal{B}} \cdot [v]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$.