Name (Last, First):

Student ID: _____

1. Determine if the columns of the matrix form a linearly independent set.

0	2	3
1	3	6
-1	1	0

Solution 1. The set is linearly dependent. This is because

	0		$\begin{bmatrix} 2 \end{bmatrix}$		3		[0]
3	1	+3	3	-2	6	=	0
	-1		1		0		

so that the three columns form a linearly dependent set.

Solution 2. Let's take the associated augmented matrix for the homogeneous equation.

Γ	0	2	3	0]	
	1	3	6	0	
L	-1	1	0	0	

In order to make the matrix to be in Row Echelon Form, we need the below row reduction steps.

ſ	$\begin{array}{c} 0 \\ 1 \end{array}$	$\frac{2}{3}$	$\frac{3}{6}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	\sim	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\frac{3}{2}$	$\frac{6}{3}$	0 - 0	\sim	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\frac{3}{2}$	$\frac{6}{3}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	\sim	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\frac{3}{2}$	$\frac{6}{3}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
	_1 _1	3 1	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	\sim	-1	$\frac{2}{1}$	$\frac{3}{0}$	0	\sim	0	$\frac{2}{4}$	$\frac{5}{6}$	0	\sim	0	$\frac{2}{0}$	$\frac{1}{0}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$

The first \sim is obtained by interchanging 1st and 2nd rows.

The second \sim : Changing 3rd row into 1st row + 3rd row.

The last \sim : Changing 3rd row into 3rd row + $(-2) \times$ 2nd row.

Hence, we can find a solution $z = \text{free from 3rd row. } y = -\frac{3}{2}z$ from 2nd row. x = y from 1st and 2nd row. Find one example of x, y, and z by setting z = -2, we get the weights x, y, and z (not all zeros) that make the linear combination $x\mathbf{x}_1 + y\mathbf{x}_2 + z\mathbf{x}_3$ become zero.

2. Let T(x, y) = (2x + y, x). Show that T is a **one-to-one** linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^2 ?

Solution. First of all,

$$T((x_1, y_1)) + T((x_2, y_2)) = (2x_1 + y_1, x_1) + (2x_2 + y_2, x_2)$$

= (2(x_1 + x_2) + (y_1 + y_2), x_1 + x_2) = T((x_1 + x_2, y_1 + y_2))

Also, T(c(x,y)) = (2cx + cy, cx) = c(2x + y, x) = cT((x,y)). Hence, T is a linear transformation.

Now, in order to prove that T is one-to-one, (because T is a linear transformation and by Theorem 11 (Chapter 1.9)) we only need to show that

If T(x, y) = (0, 0) then x = 0 and y = 0.

Suppose that T(x, y) = (0, 0), then it implies that 2x + y = 0, x = 0. So, obviously, you get x = 0 and y = 0. Henceforth, T is a one-to-one linear transformation.

For the last question, the answer is **YES**. To get this answer, we need the argument below.

For an arbitrary element in \mathbb{R}^2 , say (z, w), if we define x = w, y = z - 2w then T(x, y) = (2x + y, x) = (2w + z - 2w, w) = (z, w).

Therefore, T maps \mathbb{R}^2 onto \mathbb{R}^2 .