Name (Last, First):

Student ID:

1. Determine if the columns of the matrix form a linearly independent set.

$$\left[\begin{array}{rrrr} 1 & -2 & 2 \\ -2 & 5 & 1 \\ -1 & 5 & 13 \end{array}\right]$$

2. Let a map $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined as

$$T(x, y, z) = (x - y + z, x)$$
 or equivalently $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x - y + z \\ x \end{bmatrix}$

Show that T is a **onto** linear transformation. Does T map \mathbb{R}^3 **one-to-one** \mathbb{R}^2 ?