Math 54 Discussion section 212, 217 December 5, 2014

Quiz 13

1. Find a general solution to the homogeneous equation:
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The auxiliary equation is
(r—2)*(r* —2r+2)>=0.

Since 2 repeats twice, we have e and te?. Similarly, 1 + i repeat twice each, so we have
solutions e’ cost, e’ sint, and te’ cost, te! sint. Since it is 6-th order linear differential equa-
tion, the solution set has dimension 6 and the solutions we have found by far are linearly
independent 6 solutions. So, a general solution is a linear combination of them.

Answer. y(t) = c1e?® + cote® + czel cost + cuel sint + cytel cost + cgel sint
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Determine if {x1, X2} form a fundamental solution set of the system:
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1) x; and x; are solutions for the system:
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2. Let

Note that

2) x; and x3 are linearly independent:
The Wronskian W[x1, x2](t) is
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det {eﬁ 3e‘t] =5e% £ 0.

So, they are linearly independent. As a result, {x;, x2} form a fundamental solution set.
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The auxiliary equation is (r —1)?(r? —r) = 0, sor = 1 appears three times and r = 0 appears

once. So,

Answer. y(t) = c; + coe! + cstel + cyt?el.
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1) x1, X2, and x3 are solutions for the system:
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2) x1, X2, and x3 are linearly independent:
The Wronskian Wx1, x2,x3](t) is
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So, they are linearly independent. As a result, {x;, x2,x3} form a fundamental solution set.




