Quiz 10 1. Let W be the subspace of \mathbb{R}^3 spanned by two vectors $\sqrt{ }$ $\overline{1}$ 1 1 1 1 | and $\sqrt{ }$ $\overline{1}$ 3 −1 5 1 \vert . Find the vector in W which is closest (among vectors in W) to \lceil $\overline{1}$ −1 −1 6 1 $\vert \cdot$ Since every vector in W is of the form $A\mathbf{x}$ where $A=$ $\sqrt{ }$ $\overline{1}$ 1 3 1 −1 1 5 1 \vert , this problem asks to find $A{\bf x}$ such that $||A{\bf x}-{\bf b}||$ is minimum where ${\bf b}=$ $\sqrt{ }$ $\overline{}$ -1 −1 6 1 . Here, we can use *normal equation* to find it. Note that $A^TA=\begin{bmatrix} 3 & 7 \ 7 & 35 \end{bmatrix}$ and $A^T\mathbf{b}=\begin{bmatrix} 4 \ 28 \end{bmatrix}$. According to the theory, we only need to find x such that $A^T A x = A^T b$. Solving this equation, we get $\mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 $\Big].$ This is not the answer, though. The answer is $w = A\mathbf{x}.$ **Answer**. $\sqrt{ }$ $\overline{1}$ 2 −2 4 1 $\overline{1}$

2. Let H be the subspace of \mathbb{R}^4 spanned by $\sqrt{ }$ $\overline{}$ 1 0 1 1 1 \parallel , $\sqrt{ }$ $\Big\}$ 6 1 −2 5 1 \parallel , $\sqrt{ }$ $\Big\}$ 0 8 2 1 1 \parallel . Find an orthogonal basis for $H.$

Apply Gram-Schmidt process. Just be careful that everytime you compute $v_n - \frac{v_n \cdot u_1}{u_1 \cdot u_1}$ $\frac{v_n \cdot u_1}{u_1 \cdot u_1} u_1 - \cdots,$ you HAVE TO use an ORTHOGONAL set $\{u_1, \dots, u_{n-1}\}.$

Answer.
$$
\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 8 \\ 1 \\ 0 \end{bmatrix} \right\}
$$

1. Let W be given by

$$
\text{Span}\left\{\begin{bmatrix}1\\2\\3\\1\end{bmatrix}, \begin{bmatrix}-1\\1\\-1\\-1\end{bmatrix}\right\}.
$$

 $\sqrt{ }$ $\overline{0}$

1

.

 $\overline{0}$

Find the vector ${\bf w}$ in W which is (among vectors in W) closest to $\Bigg|$ 3 2 $\overline{}$

[Hint] You might use *normal equation* method. This is essentially the same question as the question about minimizing $||Ax - b||$. WHY?

Since every vector in W is of the form $A\mathbf{x}$ where $A=$ $\sqrt{ }$ $\Big\}$ 1 −1 2 1 3 −1 1 −1 1 \parallel , this problem asks to find $A\mathbf{x}$ such that $||A\mathbf{x} - \mathbf{b}||$ is minimum where $\mathbf{b} =$ $\sqrt{ }$ $\overline{0}$ 3 2 0 1 $\Bigg\}$. Here, we can use *normal equation* to find it. Note that $A^TA=\begin{bmatrix} 15 & -3 \ -3 & 4 \end{bmatrix}$ and $A^T\mathbf{b}=\begin{bmatrix} 12 \ 1 \end{bmatrix}$ 1 . Solving this, we get $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 \rceil . Note that this is NOT the correct answer, though. The answer is $w = A\mathbf{x}$. **Answer**. $\sqrt{ }$ $\Big\}$ 0 3 2 0 1 $\begin{matrix} \end{matrix}$ 1 2. Let H be the subspace of \mathbb{R}^4 spanned by $\sqrt{ }$ $\overline{}$ 1 −1 2 −1 1 \parallel , $\sqrt{ }$ $\Big\}$ 4 1 6 1 1 \parallel , $\sqrt{ }$ $\Big\}$ 3 3 4 1 1 \parallel . Find an orthogonal basis for $H.$ Apply Gram-Schmidt process. Just be careful that everytime you compute $v_n - \frac{v_n \cdot u_1}{u_1 \cdot u_1}$ $\frac{v_n \cdot u_1}{u_1 \cdot u_1} u_1 - \cdots,$ you HAVE TO use an ORTHOGONAL set $\{u_1, \cdots, u_{n-1}\}.$ **Answer**. $\sqrt{ }$ \int \mathcal{L} $\sqrt{ }$ $\Big\}$ 1 −1 2 −1 1 $\begin{matrix} \end{matrix}$, $\sqrt{ }$ $\begin{matrix} \end{matrix}$ 2 3 2 3 1 $\Bigg\}$, $\sqrt{ }$ $\begin{matrix} \end{matrix}$ 0 1 0 −1 1 $\begin{matrix} \end{matrix}$ \mathcal{L} $\overline{\mathcal{L}}$ \int .

¹Actually, in this case **b** is already in W .