- 1. Find the local maximum and minimum values and saddle point(s) of the function.
 - a) $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$ b) $f(x,y) = x^3y + 12x^2 - 8y$

A. (2, -4) is a saddle point.

2. Find the point on the plane x + 2y + z = 4 that is closest to the point (1, 0, -2).

A. $\left(\frac{11}{6}, \frac{5}{3}, -\frac{7}{6}\right)$

3. Find the absolute maximum and minimum values of f on the set D.

$$f(x,y) = xy^2$$
, $D = \{(x,y) : x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

A. The absolute maximum is $f(1,\sqrt{2}) = 2$ and the absolute minimum is f(0,0) = 0

4. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

 $f(x,y) = 4x + 6y; \ x^2 + y^2 = 13$

A. Max : 26, Min : -26

5. Find the extreme values of f on the region described by the inequality.

 $f(x,y) = 2x^{2} + 3y^{2} - 4x - 5, \qquad x^{2} + y^{2} \le 16$

A. Max : 47, Min : -7

6. The plane 4x - 3y + 8z = 5 intersects the cone $z^2 = x^2 + y^2$ in an ellipse. Use Lagrange multipliers to find the highest and lowest points on the ellipse.

A. The highest point : $(-\frac{4}{3}, 1, \frac{5}{3})$, The lowest point : $(\frac{4}{13}, -\frac{3}{13}, \frac{5}{13})$

Course Homework due Mar 12, Wed.
Mar 3, Mon. : 14.7 1, 3, 5, 7, 9, 11, 29, 31, 39
Mar 5, Wed. : 14.8 3, 5, 7, 9, 11, 15, 19, 25, 41
Mar 7, Fri. : 15.1 11, 31. 15.2 3, 5, 7, 9, 15, 17, 27, 31