SOLUTION 8

1. Evaluate the double integral.

$$
\iint_R (1+3x^2)dA, \quad R = \{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}
$$

Solution.

$$
\int_{-1}^{1} \int_{-1}^{1} (1+3x^2) dx dy = (1 - (-1)) \times \int_{-1}^{1} (1+3x^2) dx
$$

since $(1+3x^2)$ is not a function containing y-term. Then,

$$
2\int_{-1}^{1} (1+3x^2)dx = 2\left(x+x^3\right)\Big|_{-1}^{1} = 8.
$$

Answer. 8

$$
\iint_R (1+4x^3)dA, \quad R = \{(x, y) : -1 \le x \le 1, 0 \le y \le 2\}
$$

————————————————————————

Solution.

$$
\int_0^2 \int_{-1}^1 (1+4x^3) dx dy = 2 \times \int_{-1}^1 (1+4x^3) dx
$$

since $(1+4x^3)$ is not a function containing y-term. Then,

$$
2\int_{-1}^{1} (1+4x^3)dx = 2\left(x+x^4\right)\Big|_{-1}^{1} = 4.
$$

Answer. 4

- 2. Use Lagrange multipliers to find the maximum and minimum values of the functions subject to the given constraint(s)
	- a) $f(x, y, z) = x^3 + y^3 + z^3$; $x^2 + y^2 + z^2 = 3$ or 12

Solution. By Lagrange Multipliers method, setting $g(x, y, z) = x^2 + y^2 + z^2 - 3$ or 12, we know that the maximum and minimum, if exist, is attained at P such that $\nabla f(P)$ || $\nabla g(P)$ (|| means parallel), that is, $3(x^2, y^2, z^2)$ || $2(x, y, z)$. So, we can say that $(x^2, y^2, z^2) \parallel (x, y, z)$ since multiplication by scalar just scales a vector but does not change the direction. Now, $(x^2, y^2, z^2) = \lambda(x, y, z)$ for some $\lambda \neq 0$.

So, we have three equations $x^2 = \lambda x$, $y^2 = \lambda y$, $z^2 = \lambda z$. Hence, there are 2 possible cases for each x, y, z that they are one of 0 or λ .

1) If they are nonzero, then $x^2 + y^2 + z^2 = 3$ gives $3\lambda^2 = 3$ or 12 so that $\lambda = \pm 1$ or ± 2 . In this case, $f(x, y, z) = \pm 3$ or ± 24

2) If exactly one of them is zero, we get $2\lambda^2 = 3$ or 12. In this case, $f(x, y, z) = \pm 3\sqrt{\frac{27}{8}}$ or $\pm 36\sqrt{6}$.

3) If exactly one of them is nonzero, we get $\lambda^2 = 3$ or 12 and $f(x, y, z) = \pm 3\sqrt{3}$ or $\pm 24\sqrt{3}$.

Lastly, note that $3\sqrt{3} > 3\sqrt{\frac{27}{8}} > 3$ or $24\sqrt{3} > 36\sqrt{6} > 24$.

Answer. Max : $3\sqrt{3}$ or $24\sqrt{3}$ for each problems, Min : -3 $\sqrt{3}$ or $-24\sqrt{3}$. b) $f(x, y, z) = x^2 + y^2 + z^2$; $x + y = 3$ or 2 , $2x + 3y + 2z = 3$ or 5

Solution. Just recall that the condition for Lagrange Multipliers method (for two constraints) is

$$
\nabla f \in \text{span}\{\nabla g, \nabla h\}.
$$

And as we have discussed in section class we can write down that condition in a different way;

$$
(\nabla g \times \nabla h) \cdot \nabla f = 0.
$$

For this problem, $\nabla g = (1, 1, 0)$ and $\nabla h = (2, 3, 2)$ so that $\nabla g \times \nabla h = (2, -2, 1)$. Since $\nabla f = 2(x, y, z)$, the condition will be $2(2x - 2y + z) = 0$, so $2x - 2y + z = 0$. Now, we only need to solve three linear equations.

$$
x + y = 3 \text{ or } 2
$$

$$
2x + 3y + 2z = 3 \text{ or } 5
$$

$$
2x - 2y + z = 0
$$

They have a solution $(x, y, z) = (2, 1, -2)$ or $(1, 1, 0)$. Since we have only one point satisfying Lagrange Multipliers method condition, there would be no maximum or no minimum. To check this, it is enough to compute f for other point that is different from $(2, 1, -2)$ or $(1, 1, 0)$.

First find a point lying on $x + y = 3$ and $2x + 3y + 2z = 3$, for example $(0, 3, -3)$ and then calculate $f(0, 3, -3) = 18 > 9 = f(2, 1, -2)$. Hence, $f(2, 1, -2) = 9$ is the minimum.

Answer. Max : Does not exist, Min : 9 or 2.

Letter grade for Quiz 8

