1. Find the local maximum and minimum values and saddle points of the function.

b) $f(x,y) = (x^2 + y)e^{y/2}$ a) $f(x, y) = 3xy - x^2y - xy^2$

A. f attains its local maximum 1 at (1, 1). Saddle points are (0,0), (3,0), (0,3).

A. f attains its local minimum $-\frac{2}{e}$ at (0, -2).

2. Find the absolute maximum and minimum values of f on the set D.

a)
$$f(x,y) = 4xy^2 - x^2y^2 - xy^3$$
;
D is the closed triangular region in the *xy*-plane b) $f(x,y) = e^{-x^2 - y^2}(x^2 + 2y^2)$
D is the disk $x^2 + y^2 \le 4$

with vertices (0, 0), (0, 6), and (6, 0).

b)
$$f(x,y) = e^{-x^2 - y^2} (x^2 + 2y^2);$$

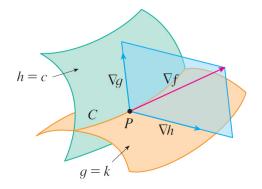
D is the disk $x^2 + y^2 \le 4.$

A. f attains its absolute maximum 4 at (1,2) and **A.** f attains its absolute maximum $\frac{2}{e}$ at (0, 1) and (0, -1), and minimum 0 at (0, 0). minimum -64 at (2, 4).

- 3. Use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint(s).
 - a) $f(x,y) = x^2y; x^2 + y^2 = 1$

A. f has its maximum $\frac{2}{3\sqrt{3}}$ at $(\pm \frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ and minimum $-\frac{2}{3\sqrt{3}}$ at $(\pm \frac{\sqrt{2}}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$.

b) $f(x, y, z) = x^2 + 2y^2 + 3z^2$; x + y + z = 1, x - y + 2z = 2



A. f has no maximum since f can attain sufficiently large values. f attains its minimum $\frac{33}{23}$ at $\frac{1}{23}(18, -6, 11)$. 4. Evaluate the double integral by first identifying it as a the volume of a solid.

$$\iint_{R} (5-x) dA, \qquad R = \{(x,y) : 0 \le x \le 5, 0 \le y \le 3\}$$

5. Calculate the iterated integral.

. .

a)
$$\int_{0}^{1} \int_{1}^{2} (4x^{3} - 9x^{2}y^{2}) dy dx$$

b) $\int_{0}^{1} \int_{1}^{2} \frac{xe^{x}}{y} dy dx$
A. -6

Course Homework due Mar 19, Wed. Mar 10, Mon. : **15.3** 1, 3, 5, 7, 9, 11, 19, 21, 39, 41 Mar 12, Wed. : 15.4 7, 9, 11, 13, 15, 17, 21, 23, 29 Mar 14, Fri. : Midterm #1

A. $\ln 2$

A. $\frac{75}{2}$