Homework 7 - Spring 2020 MATH 126-001 - Introduction to PDEs

1. Let $U \subset \mathbf{C}$ be an open domain and $f: U \to \mathbf{C}$. Suppose that

$$f(x+iy) = u(x,y) + iv(x,y)$$
 and $\overline{f}(x+iy) = u(x,y) - iv(x,y)$

are holomorphic on U.

Find f.

2. Let

$$u(x,y) = \frac{x}{2} - 6x^2 + 4y - 6x^2y + 6y^2 + 2y^3.$$

- (a) Find all harmonic conjugates of u.
- (b) If $z = a + ib \in \mathbf{C}$ then the **real** and **imaginary** components of z are defined by

$$\operatorname{Re}(z) = a$$
 and $\operatorname{Im}(z) = b$.

Find a function $f: \mathbf{C} \to \mathbf{C}$ in terms of $z \in \mathbf{C}$ such that

$$\operatorname{Re}(f) = u$$
.

- (c) Find the largest domain in \mathbf{C} that the function f from (b) is holomorphic on.
- 3. (a) Find

$$\oint_{|z-3|=2} \frac{e^{-z^2}}{z^3 - 9z^2 + 11z + 21} \, dz.$$

(b) Find

$$\oint_{|z-1|=2} \frac{\sin(z)}{z^2 - 4} \, dz.$$

4. Suppose the function $f : \mathbf{C} \to \mathbf{C}$ is holomorphic on

$$A = \{ z \in \mathbf{C} \mid 2 \le |z| \le 3 \}.$$

Furthermore,

$$|f(z)| \le 16$$
 on $|z| = 2$ and $|f(z)| \le 36$ on $|z| = 3$.

Show that

$$|f(z)| \le 4|z|^2$$

on A.

5. This problem outlines a "bar room" / informal proof of Cauchy's Integral Formula.

Assume U is a simply connected domain. Let f be holomorphic on ∂U and inside U and suppose $z_0 \in U$. We know

$$\oint_{\partial U} \frac{f(z)}{z - z_0} dz = \oint_{C_r} \frac{f(z)}{z - z_0} dz$$

where C is a circle centered at z_0 with radius r.

- (a) Express $z = z_0 + re^{it}$ where r is given by C and $t \in [0, 2\pi]$ and rewrite the above integral in polar form.
- (b) From (a) let $r \to 0$ in the integrand. Then integrate and find

$$\oint_{\partial\Omega} \frac{f(z)}{z-z_0} dz.$$

- (c) What lacked rigor with what you did in part (5b)?
- 6. Find all radially symmetric solutions of

$$u_{xx} + u_{yy} + u_{zz} = k^2 u.$$

7. Find all radially symmetric solutions of

$$u_{xx} + u_{yy} = k^2 u.$$

8. Determine if the maximum principle for harmonic functions applies to the function

$$u(x,y) = \frac{1 - x^2 - y^2}{1 - 2x + x^2 + y^2}$$

over the disk

$$D = \{ x \in \mathbf{R}^2 \mid |\mathbf{x}| \le 1 \}.$$

9. Solve

$$u_{xx} + u_{yy} = 0$$

on the set

$$D = \{x \in \mathbf{R}^2 \mid |\mathbf{x}| \le 1\}$$

where

$$u = 1 + 3\sin\theta$$
 on ∂D .

(Here θ denotes the polar angle on the boundary of D)

1. Idea: Use Caudy-Riemann equations to check holomorphicity.

1. Lea: Use Caudy - Kiemann equations to check holomorphicity.
f is holomorphic => $U_x = V_y$ & $U_y = -V_x$ on U .
$f is holomorphic \implies U_x = (-V)_y \ b \ U_y = -(-V)_x = V_x$
Hence, $V_{3} = U_{2} = -v_{3} \implies v_{3} \equiv 0$, $U_{2} \equiv 0$. Similarly, $U_{3} \equiv 0$, $v_{2} \equiv 0$.
Therefore, $U(X,Y)$ and $V(X,Y)$ should be constant. In particular, $f=c$ for some
$c \in \mathbb{C}$

2. Idea: Harmine anjugates the inightary part of the holomorphic function having it as the real part.
(a) By the lady-Riemann equations, we have
$$\mathcal{V}$$
 (the harmine anjugate of it) satisfy $\mathcal{V}_{2} = (d_{x} = \frac{1}{2} - (2x - 12xy))$ by $\mathcal{V}_{2} = -4 + 6x^{2} - (2y - 6y^{2})$.
Therefore, $\mathcal{V}(2,y) = \frac{1}{2}y - (22y - 62y^{2} + f(x))$ and $f(x) = -4 + 6x^{2}$, so we get $\mathcal{V}(2,y) = \frac{1}{2}y - (22y - 62y^{2} + q(x))$ and $f(x) = -4 + 6x^{2}$, so hence. C=0.
(b) $f(x+y) = U(x,y) + \mathcal{N}(x,y)$
 $= \frac{1}{2} - (2^{2} + 4y - 6x^{2}y + 6x^{2}y + i(\frac{1}{2}y - 122y - 62y^{2} - (x+2x^{3}))$
 $[(2+xy)^{3} = x^{3} + 6x^{2}yi - 6xy^{2} - y^{3}i + x^{2}i]$
 $[(x+iy)^{2} = x^{2} + 22yi - y^{2}] \times -6$
 $[(x+iy)^{2} = x^{2} + 22yi - y^{2}] \times -6$
 $[(x+iy)^{1} = x+iy - [x(\frac{1}{2} - 4i))$
Therefore, $f(z) = 2iz^{3} - 6z^{2} + (\frac{1}{2} - 4i)z^{2}$.
(c) $f(z)$ is a polynomial of z , so it is defined all over C and holomorphic everywhere. The largest abmain \bar{z} C .

3. Idea : Use Cauchy's Thegral Formula after declay that the integrand is holomophic. (a) Cauchy's integral formula tells us that if f(2) is holomorphic in U, then $\int_{\partial D} \frac{f(\lambda)}{z-\alpha} d\lambda = 2\pi i \cdot f(\alpha) \text{ for any } \alpha \in D \text{ where } D \text{ is a closed disk in U.}$

Dongsyn Lim

We can easily see that
$$Z^2 - 9Z^2 + 1/(2+2) = (2-3)(Z^2 - 6Z - 7)$$

 $= (Z-3)(Z-7)(Z+1).$
Let $f(Z) = \frac{e^{-Z^2}}{(Z+1)(Z-7)}$. As e^{-Z^2} , $\frac{1}{Z+1}$, $\frac{1}{Z-7}$ are holomorphic
outside $Z = -1$ be $Z = 7$, we can drave $U = \frac{1}{2} Z C : (Z-3) < 3\frac{1}{2}$
over which f is holomorphic. Let $D = \frac{1}{2} Z C : (Z-3) < 2\frac{1}{2}$. Then, we can
apply Caudy's integral famula:
 $\int \frac{f(Z)}{(Z-3)=2} \frac{1}{Z-3} dZ = 2T(X + \frac{1}{3}) = 2T(X - \frac{e^{-3^2}}{(3+1)(3-7)})$
 $= -\frac{1}{8}e^{9-TXi}$.
(b) Similarly, let $f(Z) = \frac{Sin(Z)}{Z+2}$ and $U = \frac{1}{2} Z C : (Z-1) < 3\frac{1}{3}$ and
 $D = \frac{1}{2} Z C : (Z-1) < 2\frac{1}{3}$. Then, as $Z = 2$ bedorgs to D , we have the
following formula:
 $\int \frac{f(Z)}{Z-2} dZ = 2T(X + \frac{1}{2}) = \frac{1}{2} Sin(2) \cdot TXi$.

4. Idea: Use the maximum modules principle after decking the assumptions, The maximum modulus principle can be applied to $f(z)(z^2)$ which is holomorphic In the connected open subset { ZEC: 2<121<31. The conditions given are $|\{e_{2}/2^{2}| \leq 4$ for |2|=2 by $|f(2)/2^{2}| \leq 4$ for |2|=3. This implies that on the boundary of the open subset, the absolute value is bounded above by 4. By the maximum modulus principle, (f(2)/22/ <4 on the open subset. It is equivalent to saying that $|f(z)| \leq q (z^2)$ inside be on the boundary. 5 Maximum modules principle à a holomorphic function version of the maximum principle for a harmonic function,

Dongsyn Lin

5. Idea: Tollas the instruction (a) $\oint_{Cr} \frac{f(z)}{z-z} dz = \int_{0}^{2\pi} \frac{f(z+r,e^{it})}{r\cdot e^{it}} r\cdot e^{it} dt$ $(dz = \frac{d(z+r,e^{it})}{dt} dt = r\cdot e^{it} dt$ $= \int_{0}^{2\pi} f(3s+r\cdot e^{it}) \cdot i dt$ (b) Only thing affected by the change of r is f(20+tr. ent). As r goes to 0, it goes to f(20). The integral does not depend on γ and as $f_{\overline{15}}$ continuous, $f_{\overline{352}} = \frac{f(2)}{2-2}d2 = \int_{1}^{2} \frac{f(2)}{2-2}d2 = \int_{1}^{2} \frac{f(2)}{2-2}d2$ $= \int_{0}^{2\pi} f(a) \cdot idt$ $= f(z_{0}) i \int_{z_{1}}^{z_{1}} (dt = 2\pi i f(z_{0}))$ (c) In the proof of port by we used the fact that lim f = f lim. In order to have a concrete proof, we need to check under our assumption of the above "commutativity" holds. 6. Idea: Use the spherical coordinate Laplacian, In spherical coordinates, the Laplacian can be written as $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r}\right) + othertems$ where the "other terms" are partial derivatives wirt the angles. However, we are lodging for the solutions which are radially symmetric. So, the equation can be witten as $\frac{1}{\gamma^2} \cdot (r^2 \cdot u_r)_r = k^2 \cdot u$ Un+ 2Ur. However, in fact, the left hand side can be written as +(ru), Therefore, the equation now becomes $f(ru)_{rr} = k^2 u$ and $(ru)_{rr} = k^2 ru$. We already know that f'-kf=0 has the solution $f(x)=C_1e^{kx}+C_2e^{-kx}$ -- $U(H)=C_1e^{kx}+C_2e^{-kx}$ We get $U(r) = C_1 \cdot \frac{e^{kr}}{r} + C_2 \cdot \frac{e^{-kr}}{r}$. 5 Changing Un + 7 Un into f (nu) is crucial bad a little bit tricky.

Dongligue LTM

7. Idea: Use the spherical coordinale laplacian.
As the equation is I-drink setup, we have Use they = Unit fully given
that u is radially symmetric. So, the equation now becomes:

$$U_{47} + \frac{1}{2}U_{7} = k^{2}U_{1}$$
.
In other words, $\gamma^{2}U'' + \gamma U' - k^{2} \cdot r^{2}U = 0$. However, this looks similar to
the Bessel's equation. We can try to change the coordinates to make this be
the Bessel's equation. Let C be a scalar and $V(H) = U(CH)$. Then,
 $V'(H) = CU'(CH)$ and $V''(H) = C^{2}U''(CH)$. If we plup in Cr to
the arginal equation, we get $C^{2}r^{2}U''(CH) + Cr U'(CH) - k'C'r^{2}U(CH) = 0$.
 $r^{2}'V''(H) - r''V'(H) - k'C'r^{2}U(CH) = 0$.
The Bessel's equation has the coefficient of this be $+r^{2}$, so we can guess
that $C^{2} = -\frac{1}{k^{2}}$ or $C = \frac{1}{k^{2}}$. Then, $V(H)$ becomes a solution of the bessel's
equation of order 0. \cdots $U(H) = V(-E) = V(kir) = C_{1}J_{1}(kir)$
where J_{0} : the solution of the first kird. Yor that of the second kird.

8. Idea: Express the numerator and the denominator in terms of $z = x_i i y$ and $\overline{z} = x_{-i} y$.

The denominator is $(2-1)^2 = (2-1)(\overline{z}-1) = (2-1)(\overline{z}-1)$ and the numerator is $1-(\overline{z})^2 = 1-\overline{z}\overline{z}$. One way to prive that U is harmonic is to find a hobimorphic function $f(\overline{z})$ which satisfies $f(\overline{z}) + \overline{f(\overline{z})} = 2U$. From the above observation, we have a guess $f(\overline{z}) = \frac{1}{\overline{z}-1}$. In this case, we get $f(\overline{z}) + \overline{f(\overline{z})} = \frac{\overline{z}+\overline{z}-2}{(\overline{z}-1)(\overline{z}-1)}$. We how observe that the numerator and the denominator can be "assembled" to generate what we are belowing for. A careful Consideration suggests $f(\overline{z}) = \frac{-2}{\overline{z}-1} - (\overline{z}-1)\overline{z}$. It is holomorphic on $\frac{2}{\overline{z}}\overline{c}\overline{c}$. $(\overline{z}|\zeta|)$. Therefore, $U = Re(f(\overline{z}))$ is hormonic on $f(\overline{x},\overline{z}) \in [R^2: \overline{x}^2 + \overline{z}^2 - 1] = U$. Now, we can apply the maximum principle if U is continuous along the boundary $\overline{x}^2 + \overline{z}^2 = 1$. However, along the boundary, the denominator is $(-2)(+(\overline{z})(-\overline{x}))$ becomes 0 at $\overline{z}=1$. So, it is not just discontinuous, but it is not defined. So, you convect defain the maximum.

9. Idea: Laplace's equation an spherical domain (8.4.2 in Snearer billey)
Using Separation of Variables (U(r,0) = RT)(H(0), we have the candidable for u
as follows:
$$U(r,0) = \frac{1}{2^{n}} + \frac{2^{n}}{r^{n}} r^{n} (Ancorot Bisting)$$
 where A_{n} and B_{n} are
 $\frac{1}{T_{n}} \int_{0}^{2\pi} f(0) as no do and $\frac{1}{T_{n}} \int_{0}^{2\pi} f(0) sinnodo for the boundary candidate $1 = f$ and $2 = \frac{1}{T_{n}} \int_{0}^{2\pi} (1 + 3 sino) as odo = -\frac{1}{T_{n}} \int_{0}^{2\pi} (2 sino) db = \frac{1}{T_{n}} 2 \pi = 2.$
 $A_{n} = \frac{1}{T_{n}} \int_{0}^{2\pi} (1 + 3 sino) as no do = -\frac{1}{T_{n}} \int_{0}^{2\pi} (2 sino + 3 sino as no) db = 0 + 0 = 0.$
 $B_{n} = \frac{1}{T_{n}} \int_{0}^{2\pi} (1 + 3 sino) sinnodo = -\frac{1}{T_{n}} \int_{0}^{2\pi} (3 sino + 3 sino as no) db = 0 + 0 = 0.$
 $B_{n} = \frac{1}{T_{n}} \int_{0}^{2\pi} (1 + 3 sino) sinnodo = -\frac{1}{T_{n}} \int_{0}^{2\pi} (3 sino + 3 sino as no) db = 0 + 0 = 0.$
 $0 + \frac{2}{T_{n}} \int_{0}^{2\pi} 3 sin \partial do (n = 1)$
 $\int_{0}^{2\pi} sin^{2} do d = \int_{0}^{2\pi} 2 z d = -\frac{1}{2} 2 T \cdot S_{n}, B_{1} = -\frac{3}{T_{n}} \cdot T = 3.$
 $\therefore U(r,0) = (+r + r \cdot 3 \cdot 3 sino = (+3r sino).$
4 Harrison is simply 1+33 in the standard coordinate, It's Laplacian to
Zero as both partial destratives variesh.$$