
Homework 4 - Spring 2020 MATH 126-001 - Introduction to PDEs

1. Consider the wave equation that includes frictional damping:

utt + µut = c2uxx,

in which µ > 0 is a damping constant. Show that if u(x, t) is a C2 solution
with ux ! 0 as x ! 1, then the total energy E(t) =

R1
�1

1
2(u

2
t + c2u2

x)dx is a
decreasing function.

Incidentally, can you devise a C2 function f(x) with the property f(x) ap-
proaches a constant as x ! ±1, but f 0(x) does not approach zero?

2. Consider the second order ODE

u00(t) + c2u(t) = f(t)

u(0) = �

ut(0) =  .

where u : R ! R is C2 and �, 2 R.

(a) Express the second order ODE as a system of first order ODE

Ut + AU = F

U(0) = �

where U, Ut, and F are vector valued functions in R
2, A 2 R

2⇥2, � 2 R
2.

(b) Solve the system from part (2a) and show that

U = e�At

Z t

0

eAs
F(s) ds+ �e�At.

(c) Define the solution operator S by

S(t)W = e�At
W

and express the solution from (2b) in terms of S, � and F.

What ODE does S(t)� solve?

3. Let

utt � c2uxx = f(x, t), x 2 R, t > 0

u(x, 0) = �(x), x 2 R

ut(x, 0) =  (x), x 2 R.

(a) Express the second order PDE in terms of a system of PDEs as you did
in (2a).
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(b) Solve the system from (3a) for the case

utt � c2uxx = 0, x 2 R, t > 0

u(x, 0) = �(x), x 2 R

ut(x, 0) =  (x), x 2 R.

and define the solution as Uh. The solution operator for the system is
therefore S(t)�(x) = Uh.

(c) Following the pattern established in (2c), write the solution of the non
homogeneous system established (3a) and compare it to the solution we
derived in Section 4.4.

4. Find the solution of

utt � uxx = f(x, t), x > 0, t > 0

u(x, 0) = �(x), x > 0

ut(x, 0) =  (x), x > 0

u(0, t) = �(0) = 0

for x  t by using Green’s Theorem and integrating over the domain of depen-
dence.

5. Consider the wave equation in three dimensions, with initial conditions in which
�(x) = f(|x|) is rotationally symmetric, the function f satisfies f(r) = 0, r � ✏,
and  ⌘ 0. Show that the solution u(x, t) is (a) rotationally symmetric, and
(b) zero outside a circular strip centered at the origin and having width ✏.

6. Show that ��(r, t) = �rr +
n�1
r �r. Consequently, the heat equation for rota-

tionally symmetric functions u(x, t) = �(r, t), r = |x|, is

�t = k

✓
�rr +

n� 1

r
�r

◆
.

Also do the same problem but for the wave equation in R
3, show u(r, t) satisfies

utt = c2
✓
urr +

2

r
ur

◆
.

7. (a) Let g : [0,1) ! R be a bounded integrable function. Prove directly that

u(x, t) =

Z 1

0

(�(x� y, t)� �(x+ y, t))g(y)dy

is an odd function of x 2 R for each t > 0. (Here, �(x, t) := 1p
4⇡kt

e
�x2

4kt .)

(b) Let h : R ! R be an odd bounded integrable function. Prove that

u(x, t) =

Z 1

�1
�(x� y, t)h(y)dy

is an odd function of x 2 R for each t > 0. That is, the symmetry in the
initial data is carried through to the same symmetry in the solution.
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Homework 4 Solution DongGyu Lan
1. Idea : You can basically mimic the argument in 4.3

.

It is enough to show that E'CE) is negative . / What if Ut=o ?
⇐Ect) = ¥ f? z'(Uttech) du - ⇒ the equation becomes Utt = Clear .

= f] I #(left cheat da ⇒ uol.tkFGH tax-ett

= IF I (2UtUttt2EUaU*)dk ( ⇒ F'freak et, tcompute Uto .

⇒FIG constant ⇒ lkx.tk Coke.
.= 15 ( Ut ' Unstuck) +EllaUnt) dk o

= II -ee -UI da t I (Cet -Uxxtckcuaedk But
, Ux -so as Hos ⇒ CEO.

= -µ . IF UIdate 15 zftfut - Ux)dk / Therefore, uol.tl should be constant
.

= -M - (positive number) to <O .

°- °-

first of all. we can think about flat a 5M¥
.

We know that the derivative does

not go to zero even though f- goes to o (as a goes to o) . So
,
this famous function

is giving some clue about what we are looking for
.

We want an example of 'as a-soo ',
so let's take at sink instead

.

However
, the derivative becomes

"
and it converges

to o as a-soo . To make Kosa part have 22- term
, we can try I 5Th .

Now
, ( TT stuck)) 's

K- 2K-05GB - stuck)
a-

= 2 okay - Fil and now it does not converge

as a-soo .

4 It looks like you need some extra assumptions on U (or Un & Ut) . For example .
(as in the argument of 4.3) we need to assume that Ut and Un ate L'- functions

.

Otherwise
,

it is not necessarily the case that we can talk about Eos Ut - Ux
.

2
.

We learn this matrix method in Math54
.

(a) Let UCH be the vector function (Tilth )
.

Then
, Ut - tha

'

f- (tethered
If we let A be foot) and F = ( E) ,

- - - - - - - - '

÷ too 'o) (fifth) + HE,) .

we get It = AUTF
.
Hocevar

,
the initial condition becomes UGK (%Y) - (8)- E

.

(b) We introduce eat : = Ist Att ¥t . . - - which satisfies (eat)
'

= A. eat
.

Then
, @At.UI-eAtUtAeAtCl-eAtfCftAuf-eAtf.CHere.AeAt=eAtA is used

.)
Therefore, eat . U = Ites - Folds +C and CEE can be obtained from the initial audition

.
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DongGyu him
(C) We can change all the terms with eat into the ones with SCH

.

U= e-At got eastesHs + e-At.I
= got SH -s) Folds + SCHEI

.

SAKE) solves the equation UttAU= O and UCO = Te
.

3. Idea : We regard Una to be 2h46) and consider 2×2 as if it is a number
.

Cal let U be ( Yet)
.

Then
, Cle - #e) = (fate f) = t CE ) - 6%6)( felt

The initial condition is Uca ,ok .

=-AOtf
.

(b) The unique solution of Utf Uxx w/ UH,01=091 and Utkal -41K) thxEIR
,
t>o

is given by d'Alembert solution : UHH = I[office# toa- CED ta UGH
.

Hence
. SCHICK can be obtained by fluffy;tf,)=( I' Lokaeat tocxetB-ztfi.IE4GHzEffect# -06-ctfzfyfktctttyfx-AB!

(c) So
, given any two functions of x : 0cal and UCH

,
we understand the operator

acting on TECH- (9%4) as WE D= (Etta't#toutedties.EE#aodaIL0CatctI-oin-ctItEC4CxectHukxeeD ) and
then SHI CECH) satisfies the equation UttAU- O .

Now
,
we want to solve the nonhomogeneous system and the strategy is the following :

Consider U = SEMEN) t ft Sct⇒ ftp.sdds .
Then , Utt All = (SERENATA SHED) t # ft SA -sittersDds + A- Got Genialds

.

I by definition of SCH.
= Sff -t) Fett) t ft (SH-sKFCksD¥ds + Af! SE-s) CFC'sDds
= Flat) -10 . for¥31000 .

So
, UGH) : = SCHLECK)) t ft SH- s)(FasDds gives a solution to the nonhomogeneous

equation. we know that it is unique. So, this should turn out to be the same as the one fiancee.

Let's double check : Note that we only need to compile the fast coordinate
. SHEEN goes

£ feet# toe-aft # GEET 4GHz . Recall that Faust = ( fans,) ,
so SA-sstttn.si)

well have # fit faddy as its first coordinate
. Therefore

, Ucxit)

is ztfocxectttocaetiftzcfiiiitttsldttzof! feastdads
. They coincide .
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DongGyu him
4. Idea: The point of

'

using Green's theorem' is that we consider the region bounded by
Xtot- const . & Act Inst . and take the surface integral of Utt - Elka .

We will apply Greens theorem to ffsfdndt where s is the

que
region below :

By Greens theorem ffsfdxdt-ffn.LU#-EUanldadt t.ca?a=e
= IL

,
www.uuk-EUadt-Utdk) i-← 4

We separate the segments : (note that ⇐ I in our case)
↳

?
Li : Ket--Kotto C: constant) so dkedt = o and - Uxdt- Utdk= Uxdktlltdt- du . 4

£
,

is just fdu = UCXo.to) - U(Xytto , O)
⑨(Xotto) .

Lz : Kt= Xo-too . Similarly ,

we get f.↳ = - fda = UGG.to) - UCO. to-76) .

↳ : att= to-Ko
. Similarly , I

,
= fda = U(to-X. . o) - UCO , to - Xo)

↳ : f-O ⇒ dt=o
,
so ↳ = f -utdx = - III c)da?OH-Xo) .

o
"

Therefore
, ffsfdadt-2ucxo.to) - olcxottoltocto-Xo) - 266,6-Xo) - fix! da

.

⇒ ucxo.tokzfocxoth-OCG-xoftztfato.tn?YGHyttffsfCxitHadt .
Here

, ffofcxittdadt = foto ft"
"- t

,
feat,dude

.(t - Ho-Xo)

Ufxtkzfocxttl -out-aBtzfI¥UGHyt¥f , If Cass dads .

4 You need to be careful about the direction of the integrals .

5. Idea: U ( X.t) is obtained by integrating the tutted audition function along a sphere of the center X
.

(a)from (4.23) Tn Section 4.5 of the textbook
,
we have the following formula for the solution:

UHH - tf 44MW + Eft - f 0 ds)
O in our case

It is enough to prove that f ADDS only depends on 1*1 for a fixed t .

We will use a well- known fact from Linear Algebra. Let X
'

EIR' be another vector of

the same length .
Then

,
we can find a linear transformation T ( or 3×3 matrix M)
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DongGyu LTM
satisfying the following conditions : l) MX- X

'

2) 1444=23 (the 3×3 identity matrix)
3) def 14=1 .

How? You can find an orthonormal basis B anlatning X and B
'

containing X
' whose orientations are the same

.

Then
, you can consider the change of coordinates matrix from B to B

'
.

Clearly , 14 defines a differentiable bijective map from SCX.CH to '
et) because

µ (*tot -J) = text Ct - MJ = X't Ct -I but M preserves the length and bijection
so I covers SCO

,
l)

.

Now , we apply the change of coordinates formula to our integration :
→
ds' : the area given by the original parametrization.

f
¥,
(MHS n.f.gco.ee?fC*tVldS'zehangeoe- coordinates *' - thx .

translation → ds : the area after changing the coordinates
does not change the area

because oK*i=fa*p

= Tesco
,

(M*+MAISIE - - - - - - -
I ¥ because this term is computed by

⇒ 0114*1=7414*1) → f 0C *to)dS ' IMU x Mol
= FCFXTMTMX) l
- for some vectors

=f(Txt) VESA'
-

l (UX VI u & v

=HI *D=#
. E f- sax. (Y) DS l but Max Mu = M (Uxo) because

translation does not change l M preserves the length , the angle ,
and

DS
. I the orientation

.

- - - - -
-
-

Therefore
,
U (X.t) is constant as long as X varies over vectors of the same length .

So , it is rotationally symmetric .

(b) The circular strip means where * and t satisfies BCX, Ct) n BCo , E) =p where Bax
,
r)

Ts the ball (not a sphere) centered at X with the radius r.

If we look at the integration formula ,
it is given by IIA Fs Of Ids)

.

However, 0 =fClYl) is zero for YEIBCO .
E) but SGX,Ct) n BG , e) EB A)OBG. 9=4

.

Therefore
, the integration is zero . Hence , the derivative becomes also zero ¥(Exo)- O .

{ (a) This looks quite simple .
However

,
there seems to be no simple proof . Note that Ct) is not of constant

distance from the origin .

So
, you cannot just say f-FUYD should all be equal . You really need a parametrization

of two distinct spheres SCX.CH and
'

et)
.

(b) I think this problem is written in a very vague way
because it does not specify if I * I > E or BCX.CH CBCQE)? The meaning of the circular strip should be

specified concretely . (This textbook seems to contain lots of bad problems :C )
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DongGyu him
f. Idea : r is the function of Ki - - - Mn given by Ha , - - , Kuk¥72 .

So
,
Kai=

.

O is defined to be the sum of second partial derivatives . Let's first consider 2¥ .

2¥ = 3¥ = Or - fait of . anti - oh . E- to - F - ok
.

Now . Fail = faith .E) = r-jifniI.fr t Fi -(Orr . Jai tore . fat)
= Ort Orr

.

o -

Taking the sum over it
.

- - - in ,
we get

out ooh- n%¥ for +EI low
= WII of + Orr = ny→r+¢rr

(because F-Fitz .)

Ut is just 0£ ( chain Rule) . Therefore the heat equation for a rotationally symmetric function Ts

of = k ( Orr t Flor) .

For the wave equation, just remember that the right hand side of the equation is also the

Laplacian of u , that is ,

OU f- UnitUggtuzz)
.
We are drag it in IR? so n=3 and we get

Utt = c-(arrt f-Ur) .

7
. You can just do Tt .

(a) Our goal is to prove UC-Kitt = - Clack)
.

UC-Kit) = JI (Ffa-y.tl - EC-xty.tt)giddy = [( Totnes ,t) -EG-atDady)dy
Flatt :=t¥e¥, so - [ (EG-att- ECHT)) IGHT= - UGH) .

Flat)= Etat)

(b) Similarly ,
let's consider Utatf Foo Efx-y ,

f)heady
.

= II Tefxty ,E) Huddy .

we change coordinates yes -L : = LE Iola -yet)htt) deal . -15=55
= Jj Feck-att . - host . - dy =L - ft Tola-g.f) hey,dy = UC-kit) .

Therefore , if the initial data is odd symmetric then so as the solution .

5


