Name: $\frac{S_{\text{t}}}{S_{\text{t}}S_{\text{t}}}$ Student ID $\#$: $\frac{S_{\text{t}}}{S_{\text{t}}S_{\text{t}}}$ This exam has 7 pages, 9 questions, and a total of 100 points.

If you are taking the class P/NP you may only complete the first 6 questions. If you are taking the class for a letter grade you may complete any of the questions.

- 1. I am taking the class for a letter grade:
	- A. (0 points) Yes
	- B. (30 points) No
- 2. (15 points) Find an entire function $f: \mathbf{C} \to \mathbf{C}$ such that

$$
|f(3e^{it})| \le 2
$$

for all $t \in \mathbf{R}$ and

$$
f(\sqrt{2} + i\sqrt{2}) = e
$$

or state why no such function can exist. Make sure to justify your answer.

3. (15 points) The following came from a proof of Goursat's Theorem from complex analysis. "Assume f is holomorphic on Ω and R is an open rectangle in Ω and $z_0 \in R$... from Cauchy's Theorem, we obtain

$$
\left| \oint_{\partial R} f(z) dz \right| = \left| \oint_{\partial R} f(z) - f(z_0) - f'(z_0)(z - z_0) dz \right|^{n}
$$

Why can the author assume equality holds?

4. (15 points) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be a continuous and bounded function and *u* be a C^{∞} -solution on $\mathbb{R}^2 \times (0, 2)$ to the following heat equation:

$$
u_t - (u_{xx} + u_{yy}) = u^3
$$
 over $\mathbb{R}^2 \times (0, 2)$

$$
u(x, 0) = g(x)
$$
 for all $x \in \mathbb{R}^2$

Moreover, suppose that *u* is bounded. Show that there exists a small enough $\epsilon > 0$ such that if $|g(x)|$ is bounded by ϵ for all $x \in \mathbb{R}$, then $|u(x,t)|$ is bounded by 2ϵ for all $(x,t) \in \mathbb{R}^2 \times (0,2)$. [Hint. Use Duhamel formula and bound *u*(*x, t*).]

4. (15 points) Let
$$
g : \mathbb{R}^2 \to \mathbb{R}
$$
 be a continuous and bounded function and u be a C^{*}-solution
\non $\mathbb{R}^2 \times (0, 2)$ to the following heat equation:
\n $u_t - (u_{xx} + u_{yy}) = u^3$ over $\mathbb{R}^2 \times (0, 2)$
\nMoreover, suppose that u is bounded by $u(x, 0) = g(x)$ for all $x \in \mathbb{R}^2$
\nMoreover, suppose that u is bounded by z for all $x \in \mathbb{R}$, then $|u(x, t)|$ is bounded by 2ϵ for all $(x, t) \in \mathbb{R}^2 \times (0, 2)$.
\nHint. Use Dthamed formula and bound $u(x, t)$.]
\n
$$
(u(x, 1)) \quad \text{(a.e., u is a real, u
$$

5. Let $u \in C^2(\Omega)$ where $\Omega = \mathbf{R} \times (0, \infty)$. Suppose *u* is a solution to the initial boundary value problem

$$
u_t + u = u_{xx}, \quad (x, t) \in \Omega
$$

$$
u(x, 0) = g(x), \quad x \in \mathbf{R}
$$

where g is integrable on \bf{R} .

(a) (10 points) Use the change of variables $u(x,t) = e^{-t}v(x,t)$ to express *u* in terms of the fundamental solution of the heat equation.

(b) (5 points) Suppose we have

$$
u_t + f(t)u = u_{xx}, \quad (x, t) \in \Omega
$$

$$
u(x, 0) = g(x), \quad x \in \mathbf{R}
$$

where g is integrable on **.**

What would be an appropriate change of variables to solve this IVP? You do not need to solve the problem, only state the change of variables.

6. Let $\Omega \subset \mathbf{R}^2$ be a simply connected, bounded domain, $u \in C^2(\Omega \times \mathbf{R})$, and $c : \Omega \times \mathbf{R} \to \mathbf{R}$ is bounded by $k \in \mathbf{R}$

$$
|c(x, y, t)| \le k, \quad (x, y) \in \Omega, \ t \ge 0.
$$

Suppose *u* is a solution of

$$
u_{tt} + c(x, y, t)u_t = \Delta u, \quad (x, y) \in \Omega, \ t > 0
$$

$$
u(x, y, t) = 0, \quad (x, y) \in \partial\Omega, \ t \ge 0.
$$

Define the mathematical energy by

$$
E(t) = \frac{1}{2} \iint_{\Omega} u_t^2 + |\nabla u|^2 dA.
$$

(a) (5 points) Show

$$
E'(t) \le 2kE(t).
$$

(b) (3 points) Show

$$
\frac{d}{dt}\left(e^{-2kt}E(t)\right) \le 0
$$

for all
$$
t \ge 0
$$
.
\n
$$
\frac{d}{dt} (e^{-2kt} \xi dt) = -2k \cdot e^{-2kt} \xi dt + e^{-2kt} \cdot \xi'(t)
$$
\n
$$
= e^{-2kt} \cdot (\xi(t) - 2k \xi(t))
$$
\n
$$
\xi(t) = \xi(t) \cdot 2k \xi(t)
$$
\n
$$
\xi(t) = \xi(t) \cdot 2k \xi(t)
$$
\n
$$
\xi(t) = \xi(t) \cdot 2k \xi(t)
$$

(c) (2 points) Suppose
$$
\overline{u}(x, y, 0) = 0
$$
 for all $(x, y) \in \Omega$. Show *u* is constant.
\n
$$
E(0) = \frac{1}{2} \iint_{\Omega} U\xi^{2} (\mathcal{I}_{1}y, 0) + |\nabla U(\mathcal{I}_{1}y, 0)|^{2}
$$
\n
$$
U\xi^{2} + U\xi^{2} = 0
$$

$$
B_{3} \text{ part } b \text{ we have } e^{-2kt}E(t) \le e^{-2kt}E(0) = 0 \text{ , but } E(t) \ge 0.
$$

Hence, $E(t)=0 \Rightarrow U_{t} = U_{a} = U_{y} \equiv 0$. So, U is constant.

7. (10 points) Only work on this question if you are taking the class for a letter grade.

Let *u* be a solution to $\Delta u = 0$ on \mathbb{R}^2 such that *u* is constant on $\sqrt{|x|} + \sqrt{|y|} = r$ for each $r > 0$.

Prove that *u* is constant on \mathbb{R}^2 .

8. (10 points) Only work on this question if you are taking the class for a letter grade.

Solve the following equation using separation of variables:

$$
u_{xx} + u_{yy} = 0
$$
 on $(0, \pi) \times (0, \pi)$

with the boundary conditions $u(x,0)$, $u(x,\pi)$, $u(0,y)$ are all zeros for $0 \le x, y \le \pi$, but $u(\pi, y) = g(y)$ for a given continuous function $g(y)$ such that $g(0) = g(\pi) = 0$.

Using separation 4 variables, we assume that
$$
U(u,t) = X(n) \cdot Y(\theta)
$$
.
\nThen, $X''(x) \cdot Y(\theta) + X(x) \cdot Y''(\theta) = 0$ on $(0,\pi) \times (0,\pi)$.
\nSo, we get $\frac{X''}{X}(x) = -\frac{Y''}{Y}(y)$ which need to be constant.
\nAccording to the boundary condition: $Y(0)=Y(\pi)=0$. Use know
\nthat this can happen only what the integral is positive (s)
\n $100x - Y(0) = 0$ for the constant.
\nThen, $Y(\theta) = C cos(\pi x) + C_2 sin(\pi x)$.
\n $X(1) = d_1 e^{-\pi x} + d_2 \cdot e^{\pi x}$.
\n $Y(0)=Y(\pi) = 0$ condition tells us that $C_1=0$ and π is a
\nnonstandard number. So, we can define $Y_n(\theta) = 5\pi n$ and and
\nConsider $d_1 \cdot e^{-nx} + d_2 \cdot e^{nx}$ for $n \ge 0$.
\nNow, using the boundary condition, we have $X(0)=0$
\nwhich implies $d_1 = -d_2$. So, $Q_0 + X_n(x) = e^{nx} - e^{-nx}$.
\n $\Rightarrow U(x \cdot y) = \sum_{n=1}^{\infty} C_n \cdot (e^{nx} - e^{-nx}) \cdot sin n$ and
\n S_0 , using Fourier sine series) $C_n = \frac{e^{\pi x} - e^{-n\pi}}{e^{\pi x} - e^{-n\pi}}$. Similarly,

9. (10 points) Only work on this question if you are taking the class for a letter grade.

Let *u* be harmonic on a bounded, simply connected domain $\Omega \subset \mathbb{R}^2$. Find all functions $F: \mathbf{R} \to \mathbf{R}$ that satisfy

$$
u = F\left(\frac{y}{x}\right)
$$

for all $(x, y) \in \Omega$.