Math 126 Final Exam B Spring 2020

Name: Student 1D #:
This exam has 7 pages, 9 questions, and a total of 100 points.

If you are taking the class P/NP you may only complete the first 6 questions. If you are taking
the class for a letter grade you may complete any of the questions.

1. T am taking the class for a letter grade:
A. (0 points) Yes
B. (30 points) No

2. (15 points) Find an entire function f: C — C such that
f(3e)] <2

for all t € R and

F(V2+ivV2) =e

or state why no such function can exist. Make sure to justify your answer.

3. (15 points) The following came from a proof of Goursat’s Theorem from complex analysis.

“Assume f is holomorphic on §2 and R is an open rectangle in €2 and 2y € R ... from Cauchy’s
Theorem, we obtain

f(z) d= f(2) = f(z0) = f'(20)(2 — 20) dz|”
OR AR

Why can the author assume equality holds?



4. (15 points) Let g : R*> = R be a continuous and bounded function and u be a C*°-solution
on R? x (0,2) to the following heat equation:

U — (Ugy + Uyy) = u? over R? x (0,2)
u(z,0) = g(z) for all z € R?

Moreover, suppose that u is bounded. Show that there exists a small enough € > 0 such that if
|g(z)] is bounded by ¢ for all z € R, then |u(z,t)| is bounded by 2¢ for all (z,t) € R? x (0,2).

[Hint. Use Duhamel formula and bound u(z, ¢).
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5. Let u € C*(2) where Q = R x (0,00). Suppose u is a solution to the initial boundary value
problem

Up + U = Uyy, (2,1) €Q
u(z,0) =g(z), v€R

where g is integrable on R.

(a) (10 points) Use the change of variables u(x,t) = e *v(x,t) to express u in terms of the
fundamental solution of the heat equation.

(b) (5 points) Suppose we have

u+ f(O)u = tge, (z,t) €
u(z,0) =g(z), z€R

where ¢ is integrable on R.

What would be an appropriate change of variables to solve this IVP? You do not need to
solve the problem, only state the change of variables.
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6. Let Q C R? be a simply connected, bounded domain, u € C?(Q x R), and ¢: @ x R — R is

bounded by k € R
le(z,y, t)| <k, (x,y) €, t>0.

Suppose u is a solution of

uy + c(z,y, uy = Au, (x,y) € Q, t >0
u(z,y,t) =0, (z,y) €, t>0.

Define the mathematical energy by
1
E(t) == // u? + |Vul? dA.
2JJa

E'(t) < 2KE(t).

(a) (5 points) Show

(b) (3 points) Show
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7. (10 points) Only work on this question if you are taking the class for a letter grade.

Let u be a solution to Au = 0 on R? such that w is constant on +/|z| + /|y| = r for each
r>0.

Prove that wu is constant on R?.
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8. (10 points) Only work on this question if you are taking the class for a letter grade.

Solve the following equation using separation of variables:
Upy + Uy =0 on  (0,m) x (0,7)

with the boundary conditions u(z,0), u(z, ), u(0,y) are all zeros for 0 < z,y < 7, but
u(m,y) = g(y) for a given continuous function ¢g(y) such that g(0) = g(7) = 0.
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9. (10 points) Only work on this question if you are taking the class for a letter grade.

Let « be harmonic on a bounded, simply connected domain 2 C R?.

Find all functions F' : R — R that satisfy

- r(2)

for all (z,y) € Q.
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