
Quiz 7 Solutions, Sections 107—112

True-false

1. Let A ∈ Mn×n(R) and ~b ∈ Rn. If ~b 6= ~0 and there are infinitely many solutions

to A~x = ~b, then A is invertible.

Solution. False There are infinitely many solutions to A~x = ~b if and only if kerA is
nontrivial if and only if A is not invertible.

2. Let

A =

(
4 2 1
0 3 5

)
.

There exist two distinct matrices B 6= B′ such that A is row-equivalent to B and to
B′.

Solution. True We can simply apply two different row operations to A to obtain B
and B′. For example, A is row-equivalent to the two distinct matrices

B =

(
4 2 1
0 6 10

)
and B′ =

(
4 2 1
0 12 20

)
.

3. Let A ∈ Mm×n(R). Column operations on A preserve the solution space of
A~x = ~0.

Solution. False As a counterexample, the solutions to(
1 1
0 0

)
~x = ~0 and

(
1 0
0 0

)
~x = ~0

are clearly distinct, even though these matrices are column equivalent.

4. Let A ∈Mn×n(R). If there is a unique solution to A~x = ~b for some ~b ∈ Rn, then
A is invertible.

Solution. True If there is a unique solution, then kerA = {0}, so A is invertible.
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5. Let A ∈Mm×n(R). Row operations on A preserve the solution space of A~x = ~0.

Solution. True We can think about A~x = ~0 as corresponding to the matrix (A|~0)
augumented by a column of zeros, and row operations will preserve this last column.

6. Let A ∈Mn×n(R). If there is a unique solution ~x to A~x = ~0, then A is invertible.

Solution. True ~x = ~0 is always a solution, so if it is the only solution kerA = {0}
and A is invertible.

Written

Version 1 Find all solutions to the vector equation

 1 1 −3 4
1 1 1 −1
1 1 −1 0



x1

x2

x3

x4

 =

2
4
0


Solution. We abbreviate the above equation as A~x = ~b. We can row-reduce the
augumented matrix (A|~b) as 1 1 −3 4 2

1 1 1 −1 4
1 1 −1 0 0

→
 1 1 0 0 3

0 0 1 0 3
0 0 0 1 2

 .

From this, we can read off that a particular solution is given by

~x0 =


3
0
3
2

 .

To find all solutions, we solve the associated homogeneous system. Since rankA = 3
(there are 3 pivots) and A has 4 columns, we expect a 1-dimensional space of solutions.
It is not hard to see that 1 1 0 0

0 0 1 0
0 0 0 1

 ~x = 0⇒ ~x = t


1
−1

0
0





for some t ∈ R. It follows that the general solution to A~x = ~b is
3
0
3
2

+ ~x = t


1
−1

0
0

 , t ∈ R.

Version 2 Give an example of a matrix A ∈ Mm×n(R) (you can choose m and n)

such that A~x = ~b has a solution ~x for every ~b ∈ Rm but A~y = ~0 has a nonzero solution
~y. Prove that your example works.

Solution. This is equivalent to asking for a linear transformation T : V → W that is
onto and has a nontrivial kernel. This is only possible if dimV > dimW . Returning
to matrices, we see that m > n. One example that works is to set m = 2, n = 1, so
that

A =
(
1 0

)
.

Then

A~x =
(
1 0

)(x1

x2

)
= (b)

has a solution x1 = b, x2 = 0 for every b ∈ R. In addition, A~y = ~0 has a nontirival
solution (

1 0
)(0

1

)
= (0).

Version 3 Let W = {~v ∈ R4 : A~v = ~0}, where

A =


1 2 2 6
3 6 5 17
2 4 4 12
2 4 0 8


Find a basis for W .

Solution. Row-reduce A to obtain the RREF
1 2 0 4
0 0 1 1
0 0 0 0
0 0 0 0

 .



We see that A has rank 2. Since A has 4 columns, W = kerA is a two-dimensional
space. We can now read off that

~v1 =


−4
0
−1
1

 and ~v2 =


0
−2
−1
1


are elements of W . Since the vectors are linearly independent and there are 2 of
them, we conclude that {~v1, ~v2} is a basis of W .


