Quiz 5 Solutions, Sections 107—112

True-false

1. There exists a $n \times n$ matrix X such that for every $n \times n$ matrix A, $AX = XA$.

Solution. True For example, we can choose X to be the $n \times n$ identity or zero \Box matrix.

2. Let $T: V \to V$ be a linear transformation such that $T^2 = T$. Then T must be invertible.

Solution. False There are many counterxamples, such as the transformation T : $\mathbb{R}^2 \to \mathbb{R}^2$ given by $T(\vec{v}) = A\vec{v}$, where $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. \Box

3. There exists an invertible linear transformation $T: V \to W$ with dim ker $T > 0$.

Solution. False In order for T to be invertible, we must have dim ker $T = 0$. \Box

4. Let $T: V \to W$ be a linear transformation, and $S: W \to V$ a function such that $(S \circ T)(\vec{v}) = \vec{v}$ and $(T \circ S)(\vec{w}) = \vec{w}$ for every $\vec{v} \in V$ and $\vec{w} \in W$. Then S must be linear.

 \Box

 \Box

Solution. True See Section 3.3 of Lecture Notes 11.

5. Let $T: V \to V$ be a linear transformation. Then dim $\text{Im } T \geq \dim \text{Im } T^2$.

Solution. True $\text{Im } T^2$ is a subspace of $\text{Im } T$, so dim $\text{Im } T^2 \leq \dim \text{Im } T$.

6. If $A \in M_{2\times 2}(\mathbb{R})$ and $A^2 = \mathcal{O}$ is the zero matrix, then $A = \mathcal{O}$.

Solution. **False** Consider
$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$
.

Written

Version 1 Let B be an $n \times n$, invertible matrix. Define $\Phi : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ by

$$
\Phi(A) = B^{-1}AB.
$$

Prove that Φ is one-to-one.

Solution. We show that Φ is linear and that it has kernel $\{0\}$, from which it follows that Φ is one-to-one.

Let $c \in \mathbb{R}$ and $A_1, A_2 \in M_{n \times n}(\mathbb{R})$. Then

$$
\Phi(cA_1 + A_2) = B^{-1}(cA_1 + A_2)B
$$

= B⁻¹(cA₁)B + B⁻¹A₂B
= cB⁻¹A₁B + B⁻¹A₂B
= c Φ (A₁) + Φ (A₂)

so Φ is linear.

Now suppose that $\Phi(A) = 0$. Then $B^{-1}AB = 0$. If we multiply on the left by B and on the right by B^{-1} , we see that

$$
BB^{-1}ABB^{-1} = B^{-1}0B.
$$

But the left-hand side is $IAI = A$, and the right-hand side is 0, so $A = 0$. Thus ker $\Phi = \{0\}$ is trivial and Φ is one-to-one. \Box

Version 2 Let V and W be *n*-dimensional vector spaces and let $\beta = {\vec{v_1}, \dots, \vec{v_n}}$ be a basis for V. Prove that a linear map $T: V \to W$ is one-to-one if $T(\beta) =$ ${T(\vec{v}_1), \ldots, T(\vec{v}_n)}$ is a linearly independent set.

Solution. Every vector in V is a linear combination of the vectors in β , so suppose that $T(a_1\vec{v}_1 + \cdots + a_n\vec{v}_n) = 0$. Then $a_1T(\vec{v}_1) + \cdots + a_nT(\vec{v}_n) = 0$. But $T(\beta)$ is independent, so each $a_i = 0$. Thus ker $T = \{0\}$ and T is one-to-one. \Box

Version 3 Suppose that $T: V \to W$ is a linear transformation. Consider the related linear transformation $S: V \to \text{Im } T$ defined by $S(\vec{v}) = T(\vec{v})$. Prove that S is an isomorphism if T is one-to-one.

Solution. If $S(\vec{v}) = \vec{0}$, then $T(\vec{v}) = \vec{0}$, so $\vec{v} = \vec{0}$. Thus S is one-to-one.

By definition, Im T is the set of $\vec{w} \in W$ with a $\vec{v} \in V$ with $T(\vec{v}) = \vec{w}$. But then $S(\vec{v}) = \vec{w}$, and this holds for every $\vec{w} \in \text{Im } T$, so S is onto. As we showed before that it is one-to-one, S must be an isomorphism. \Box