Quiz 4 Solutions, Sections 107–112

True-false

1. Let $T: V \to W$ be a linear transformation. If dim V = 5 and dim W = 4, then ker T cannot be the zero vector space.

Solution. True By Rank-Nullity Theorem, dim ker T + dim im T = 5. If ker T is the zero vector space, we get dim ker T = 0 so that dim im T = 5. However, im $T \subset W$ where dim W = 4. So this is a contradiction.

2. Let V be a 2-dimensional vector space and $\beta = \{v, w\}$ be an ordered basis of V. Suppose that there is a linear transformation $T: V \to V$ satisfying $[T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Then $[T]_{\gamma}^{\gamma} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ for the ordered basis $\gamma = \{w, v\}.$

Solution. True The matrix $[T]^{\beta}_{\beta}$ tells us that $T(v) = 1 \cdot v + 0 \cdot w$ and $T(w) = 0 \cdot v + 2 \cdot w$. Now, in the reverse order $\{w, v\}$, we get $T(w) = 2 \cdot w + 0 \cdot v$ and $T(v) = 0 \cdot w + 1 \cdot v$, hence the matrix $[T]^{\gamma}_{\gamma}$ written in the problem.

3. It is impossible to find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying ker T = im T.

Solution. True By Rank-Nullity Theorem, dim ker T + dim im T = dim \mathbb{R}^3 = 3. If ker T = im T, then dim ker T = dim im T but this is impossible because they should add up to 3.

4. Let $T: P_1(x) \to \mathbb{R}^2$ be a linear transformation defined by $T(p(x)) = \binom{p(1)}{p'(1)}$. Let β be the ordered basis $\{x, 1\}$ of $P_1(x)$. There exists an ordered basis γ of \mathbb{R}^2 such that $[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Solution. False If there is such an ordered basis $\gamma = \{v_1, v_2\}, T(x) = 0 \cdot v_1 + 0 \cdot v_2 = 0$ and $T(1) = 0 \cdot v_1 + 0 \cdot v_2 = 0$. But, T(x) and T(1) are not zero vectors. **5.** Let $T: V \to W$ be a linear transformation between \mathbb{Q} -vector spaces. Let $\beta = \{v_1, v_2, v_3\}$ be an ordered basis of V and $\gamma = \{w_1, w_2\}$ be an ordered basis of W. Suppose that

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{pmatrix}.$$

Then there exist $a, b, c \in \mathbb{Q}$ (at least one of them is nonzero) such that

$$[T(av_1 + bv_2 + cv_3)]_{\gamma} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

Solution. True One can find (a, b, c) = (1, -2, 1). Or you can use Rank-Nullity Theorem: dim ker T + dim im T = dim V = 3. For the same reason as #1 above, ker T is not the zero vector space so that it should contain a nonzero vector. As β is a basis, one can represent that nonzero vector as a (nonzero) linear combination of v_1, v_2 , and v_3 .

6. Let V be a vector space of dimension n with an ordered basis β . For any linear transformation T from V to V itself, $[T]^{\beta}_{\beta}$ can never be the zero matrix.

Solution. False Counterexample: T is the zero linear transformation that sends every vector to the zero vector.

Written

Version 1 Recall that the transpose of a 2×2 matrix is defined as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear transformation defined by

$$T(A) = \frac{A^t + A}{2}.$$

For the ordered basis $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$, find $[T]_{\beta}^{\beta}$. (In this problem, you do NOT need to prove that T is linear.)

Solution. For the sake of convenience, let's denote the matrices in β by M_1 , M_2 , M_3 , and M_4 . Now, let's compute $T(M_i)$'s.

$$T(M_1) = \frac{M_1^t + M_1}{2} = M_1 = 1 \cdot M_1 + 0 \cdot M_2 + 0 \cdot M_3 + 0 \cdot M_4.$$

$$T(M_2) = \frac{M_2^t + M_2}{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0 \cdot M_1 + 0 \cdot M_2 + 1 \cdot M_3 + 0 \cdot M_4.$$

$$T(M_3) = \frac{M_3^t + M_3}{2} = M_3 = 0 \cdot M_1 + 0 \cdot M_2 + 1 \cdot M_3 + 0 \cdot M_4.$$

$$T(M_4) = \frac{M_4^t + M_4}{2} = M_4 = 0 \cdot M_1 + 0 \cdot M_2 + 0 \cdot M_3 + 1 \cdot M_4.$$
 Hence,

$$[T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Version 2 Let $M_{2\times 2}(\mathbb{R})$ be the \mathbb{R} -vector space of 2×2 real matrices. Define a linear transformation $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by

 $T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot A$ (here \cdot means the matrix multiplication).

Let $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be an ordered basis of $M_{2\times 2}(\mathbb{R})$. Compute $[T]_{\beta}^{\beta}$. (In this problem, you do NOT need to prove that T is linear.)

Solution. For the sake of convenience, let's denote the matrices in β by e_1 , e_2 , e_3 , and e_4 . Now, let's compute $T(e_i)$'s. We can actually do this in a more uniform way:

For a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the result of $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} c & d \\ a & b \end{pmatrix}$. Note that e_1 is where a = 1 and b = c = d = 0. So, $T(e_1) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = e_3$. In similar ways, we can compute $T(e_2) = e_4$, $T(e_3) = e_1$, and $T(e_4) = e_2$. Hence,

$$[T]^{\beta}_{\beta} = \begin{pmatrix} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Version 3 Let $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be a linear transformation defined by

$$T(p(x)) = \begin{pmatrix} p(-1) \\ p(0) \\ p(1) \end{pmatrix}.$$

(a) Prove that $\beta = \{x^2 - x, x^2 + x - 2, x^2 - x - 2\} \subset P_2(\mathbb{R})$ is linearly independent. (b) As dim $P_2(\mathbb{R}) = 3$, we now have β as an ordered basis of $P_2(\mathbb{R})$. For the ordered basis $\gamma = \left\{ \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$ of \mathbb{R}^3 , compute $[T]_{\beta}^{\gamma}$.

Solution. (a) Suppose that $a(x^2-x)+b(x^2+x-2)+c(x^2-x-2)$ is the zero polynomial for some $a, b, c \in \mathbb{R}$. Then we get $(a+b+c)x^2+(-a+b-c)x-2(b+c)=0$ so that a+b+c=0, -a+b-c=0, and b+c=0. Combining the first two equations, we get b=0. Now with the last one, c=0 and finally a=0. So the set β is linearly independent.

(b) For the sake of simplicity, denote the vectors of β by p_1 , p_2 , and p_3 and that of γ be w_1 , w_2 , and w_3 . Then, $T(p_1) = \begin{pmatrix} 2\\0\\0 \end{pmatrix} = 2w_3$. We can continue. $T(p_2) = \begin{pmatrix} -2\\-2\\0 \end{pmatrix} = -2w_2$ and $T(p_3) = \begin{pmatrix} 0\\-2\\-2 \end{pmatrix} = -2w_1$. Hence, $[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 & -2\\0 & -2 & 0\\2 & 0 & 0 \end{pmatrix}$.

г	_	٦	
L		1	