Quiz 2 Solutions, Sections 107—112

True-false

1. In \mathbb{R}^3 , (1,0,0) belongs to the span of (1,1,1), (2,1,3), and (0,1,-1).

Solution. False In fact, (0, 1, -1) = 2(1, 1, 1) - (2, 1, 3), so the span of three vectors becomes the span of (1, 1, 1) and (2, 1, 3). There is no *a* and *b* such that a(1, 1) + b(1, 3) = (0, 0) so you cannot make (1, 0, 0).

2. Let V be a vector space over \mathbb{R} . Consider three subspaces W, W_1 , and W_2 satisfying

$$W \cap W_1 = W \cap W_2 = \{\vec{0}\}.$$

If $W_1 \subset W_2$, then $W \oplus W_1 = W \oplus W_2$ implies that $W_1 = W_2$.

Solution. True If $W_1 \neq W_2$, you can choose $w_2 \in W_2$ such that $w_2 \notin W_1$. As $W_2 \subset W \oplus W_2 = W \oplus W_1$, you can find $w \in W$ and $w_1 \in W_1$ such that $w_2 = w + w_1$. But then $w_2 - w_1 = w$ and the left hand side belongs to W_2 while the right hand side belongs to W so that $w = \vec{0}$. This implies $w_2 = w_1 \in W_1$ and it is a contradiction. \Box

3. In
$$M_{2\times 2}(\mathbb{R})$$
, $\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$ belongs to the span of
$$S = \left\{ \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \right\}$$

Solution. False Any linear combination of these three vectors will have the same numbers for (1, 1)-entry and (2, 2)-entry.

4. Let V be a vector space and S_1 and S_2 be two subsets of V. If $S_1 \cap S_2 = \phi$, then

$$\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{0\}.$$

Solution. False Counterexample: $V = \mathbb{R}$, $S_1 = \{1\}$, $S_2 = \{2\}$. $S_1 \cap S_2 = \phi$, but $\operatorname{span}(S_1) = \operatorname{span}(S_2) = V$ so that the intersection is the whole V.

5. In $P_3(\mathbb{R})$, $x^3 + 1$ belongs to the span of

 $S = \{x + 1, x^{2} + 2x + 1, x^{3} + x^{2} + x + 1\}.$

Solution. True $x^3 + 1 = 1 \cdot (x+1) + (-1) \cdot (x^2 + 2x + 1) + 1 \cdot (x^3 + x^2 + x + 1)$. \Box

6. Let V be a vector space and S_1 and S_2 be two subsets of V. Then

 $\operatorname{span}(S_1) \subset \operatorname{span}(S_2)$

implies $S_1 \subset S_2$.

Solution. False Counterexample: $V = \mathbb{R}$, $S_1 = \{1\}$, $S_2 = \{2\}$. We get $\operatorname{span}(S_1) = \operatorname{span}(S_2) = V$, but $S_1 \not\subset S_2$.

Written

Version 1 Let W_1 be the subspace of $P_2(\mathbb{R})$ with the defining equation p(0) = 0. In short, you have

$$W_1 = \{ p(x) \in P_2(\mathbb{R}) : p(0) = 0 \}.$$

Let W_2 be the subspace defined by

$$\{p(x) \in P_2(\mathbb{R}) : p(-1) = p(1) = 0\}$$

Show that $P_2(\mathbb{R}) = W_1 \oplus W_2$.

Solution. We need to check two things: 1) $W_1 \cap W_2 = \{\vec{0}\}$. 2) $P_2(\mathbb{R}) = W_1 + W_2$. 1) $p(x) \in W_1 \cap W_2$ satisfies p(0) = 0 and p(-1) = p(1) = 0. This implies that p(x) is divided by x(x+1)(x-1), but p(x) is of degree ≤ 2 . Therefore, $p(x) = \vec{0}$. This completes the proof.

2) $W_1 = \{ax^2 + bx : a, b \in \mathbb{R}\}$ and $W_2 = \{c(x+1)(x-1) : c \in \mathbb{R}\}$. Given $p(x) = Ax^2 + Bx + C \in P_2(\mathbb{R})$, you have $(A+C)x^2 + Bx \in W_1$ and $(-C)(x+1)(x-1) \in W_2$. They add up to p(x).

Version 2 Let W_1 be the subspace of $P_2(\mathbb{R})$ with the defining equation p(x) = p(-x). In short, you have

$$W_1 = \{ p(x) \in P_2(\mathbb{R}) : p(x) = p(-x) \}.$$

Find a subspace W_2 of $P_2(\mathbb{R})$ satisfying $P_2(\mathbb{R}) = W_1 \oplus W_2$. Explain why your answer works.

Solution. Let W_2 be the span of $\{x\}$, or equivalently, $W_2 = \{ax : a \in \mathbb{R}\}$. Considering $W_1 \cap W_2$, we know that p(x) = ax satisfies p(x) = p(-x) only if a = 0, hence $W_1 \cap W_2 = \{\vec{0}\}$. Now, let's consider a more explicit description of W_1 : $p(x) = ax^2 + bx + c$ satisfies p(x) = p(-x) if and only if b = 0. Hence, W_1 can be written as $\{ax^2 + c : a, c \in \mathbb{R}\}$. Now, given any vector $Ax^2 + Bx + C$ of $P_2(\mathbb{R})$, we have $Ax^2 + C \in W_1$ and $Bx \in W_2$ and they add up to our vector.

Version 3 In $M_{2\times 2}(\mathbb{R})$, let

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

Find two vectors u and v in $M_{2\times 2}(\mathbb{R})$ making the following hold:

$$M_{2\times 2}(\mathbb{R}) = \operatorname{span}(S) \oplus \operatorname{span}(\{u, v\})$$

(Please note that it is the direct $sum(\oplus)$ not just the sum(+).)

Solution. Let $u = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. For the sake of convenience, let the two vectors of S be x and y (in the given order).

Let's first show that $M_{2\times 2}(\mathbb{R}) = \operatorname{span}(S) + \operatorname{span}(\{u, v\})$. It is enough to show that we can generate any vector by a linear combination of u, v, x, and y. Observe that $x - u = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $y - v = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Now, given any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$, we can take au + bv + c(x - u) + d(y - v) to generate the given vector. We now need to show that $\operatorname{span}(S) \cap \operatorname{span}(\{u, v\}) = \{\vec{0}\}$. However,

$$\operatorname{span}(\{u,v\}) = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\} \text{ and } \operatorname{span}(S) = \left\{ \begin{pmatrix} c & d \\ d & c \end{pmatrix} : c, d \in \mathbb{R} \right\}.$$

The intersection is where c = d = 0 which gives the zero vector.