Quiz 2 Solutions, Sections 107—112

True-false

1. In \mathbb{R}^3 , $(1,0,0)$ belongs to the span of $(1,1,1)$, $(2,1,3)$, and $(0,1,-1)$.

Solution. False In fact, $(0, 1, -1) = 2(1, 1, 1) - (2, 1, 3)$, so the span of three vectors becomes the span of $(1, 1, 1)$ and $(2, 1, 3)$. There is no a and b such that $a(1, 1)$ + $b(1, 3) = (0, 0)$ so you cannot make $(1, 0, 0)$. \Box

2. Let V be a vector space over R. Consider three subspaces W , W_1 , and W_2 satisfying

$$
W \cap W_1 = W \cap W_2 = \{\vec{0}\}.
$$

If $W_1 \subset W_2$, then $W \oplus W_1 = W \oplus W_2$ implies that $W_1 = W_2$.

Solution. True If $W_1 \neq W_2$, you can choose $w_2 \in W_2$ such that $w_2 \notin W_1$. As $W_2 \subset W \oplus W_2 = W \oplus W_1$, you can find $w \in W$ and $w_1 \in W_1$ such that $w_2 = w + w_1$. But then $w_2 - w_1 = w$ and the left hand side belongs to W_2 while the right hand side belongs to W so that $w = 0$. This implies $w_2 = w_1 \in W_1$ and it is a contradiction. \Box

3. In
$$
M_{2\times2}(\mathbb{R})
$$
, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ belongs to the span of

$$
S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \right\}.
$$

Solution. False Any linear combination of these three vectors will have the same numbers for $(1, 1)$ -entry and $(2, 2)$ -entry. \Box

4. Let V be a vector space and S_1 and S_2 be two subsets of V. If $S_1 \cap S_2 = \phi$, then

$$
\mathrm{span}(S_1) \cap \mathrm{span}(S_2) = \{\vec{0}\}.
$$

Solution. False Counterexample: $V = \mathbb{R}$, $S_1 = \{1\}$, $S_2 = \{2\}$. $S_1 \cap S_2 = \emptyset$, but $span(S_1) = span(S_2) = V$ so that the intersection is the whole V. \Box 5. In $P_3(\mathbb{R}), x^3 + 1$ belongs to the span of

 $S = \{x+1, x^2+2x+1, x^3+x^2+x+1\}.$

Solution. True $x^3 + 1 = 1 \cdot (x+1) + (-1) \cdot (x^2 + 2x + 1) + 1 \cdot (x^3 + x^2 + x + 1)$.

6. Let V be a vector space and S_1 and S_2 be two subsets of V. Then

span (S_1) ⊂ span (S_2)

implies $S_1 \subset S_2$.

Solution. False Counterexample: $V = \mathbb{R}$, $S_1 = \{1\}$, $S_2 = \{2\}$. We get span (S_1) $span(S_2) = V$, but $S_1 \not\subset S_2$. \Box

Written

Version 1 Let W_1 be the subspace of $P_2(\mathbb{R})$ with the defining equation $p(0) = 0$. In short, you have

$$
W_1 = \{ p(x) \in P_2(\mathbb{R}) : p(0) = 0 \}.
$$

Let W_2 be the subspace defined by

$$
\{p(x) \in P_2(\mathbb{R}) : p(-1) = p(1) = 0\}.
$$

Show that $P_2(\mathbb{R}) = W_1 \oplus W_2$.

Solution. We need to check two things: 1) $W_1 \cap W_2 = {\vec{0}}$. 2) $P_2(\mathbb{R}) = W_1 + W_2$. 1) $p(x) \in W_1 \cap W_2$ satisfies $p(0) = 0$ and $p(-1) = p(1) = 0$. This implies that $p(x)$ is divided by $x(x + 1)(x - 1)$, but $p(x)$ is of degree ≤ 2 . Therefore, $p(x) = \vec{0}$. This completes the proof.

2) $W_1 = \{ax^2 + bx : a, b \in \mathbb{R}\}\$ and $W_2 = \{c(x+1)(x-1) : c \in \mathbb{R}\}\$. Given $p(x) =$ $Ax^2 + Bx + C \in P_2(\mathbb{R})$, you have $(A+C)x^2 + Bx \in W_1$ and $(-C)(x+1)(x-1) \in W_2$. They add up to $p(x)$. \Box

Version 2 Let W_1 be the subspace of $P_2(\mathbb{R})$ with the defining equation $p(x) =$ $p(-x)$. In short, you have

$$
W_1 = \{ p(x) \in P_2(\mathbb{R}) : p(x) = p(-x) \}.
$$

Find a subspace W_2 of $P_2(\mathbb{R})$ satisfying $P_2(\mathbb{R}) = W_1 \oplus W_2$. Explain why your answer works.

Solution. Let W_2 be the span of $\{x\}$, or equivalently, $W_2 = \{ax : a \in \mathbb{R}\}\$. Considering $W_1 \cap W_2$, we know that $p(x) = ax$ satisfies $p(x) = p(-x)$ only if $a = 0$, hence $W_1 \cap W_2 =$ ${\{\vec{0}\}}$. Now, let's consider a more explicit description of $W_1: p(x) = ax^2+bx+c$ satisfies $p(x) = p(-x)$ if and only if $b = 0$. Hence, W_1 can be written as $\{ax^2 + c : a, c \in \mathbb{R}\}$. Now, given any vector $Ax^2 + Bx + C$ of $P_2(\mathbb{R})$, we have $Ax^2 + C \in W_1$ and $Bx \in W_2$ and they add up to our vector. \Box **Version 3** In $M_{2\times2}(\mathbb{R})$, let

$$
S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.
$$

Find two vectors u and v in $M_{2\times2}(\mathbb{R})$ making the following hold:

$$
M_{2\times 2}(\mathbb{R}) = \text{span}(S) \oplus \text{span}(\{u, v\}).
$$

(Please note that it is the direct sum(⊕) not just the sum(+).)

Solution. Let $u =$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $v =$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. For the sake of convenience, let the two vectors of S be x and y (in the given order).

Let's first show that $M_{2\times2}(\mathbb{R}) = \text{span}(S) + \text{span}(\{u, v\})$. It is enough to show that we can generate any vector by a linear combination of u, v, x , and y . Observe that $x - u =$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $y - v =$ $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Now, given any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times2}(\mathbb{R})$, we can take $au + bv + c(x - u) + d(y - v)$ to generate the given vector. We now need to show that span(S)∩ span($\{u, v\}$) = $\{\vec{0}\}\$. However,

$$
\text{span}(\{u, v\}) = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\} \text{ and } \text{span}(S) = \left\{ \begin{pmatrix} c & d \\ d & c \end{pmatrix} : c, d \in \mathbb{R} \right\}.
$$

The intersection is where $c = d = 0$ which gives the zero vector.

 \Box